Skip to main content

Abstract

Given a set S of n points in the plane, we define a Manhattan Network on S as a rectilinear network G with the property that for every pair of points in S, the network G contains the shortest rectilinear path between them. A Minimum Manhattan Network on S is a Manhattan network of minimum possible length. A Manhattan network can be thought of as a graph G = (V; E), where the vertex set V corresponds to points from S and a set of steiner points S′, and the edges in E correspond to horizontal or vertical line segments connecting points in SS′. A Manhattan network can also be thought of as a 1-spanner (for the L 1-metric) for the points in S.

Let R be an algorithm that produces a rectangulation of a staircase polygon in time R(n) of weight at most r times the optimal. We design an O(n log n + R(n)) time algorithm which, given a set S of n points in the plane, produces a Manhattan network on S with total weight at most 4r times that of a minimum Manhattan network. Using known rectangulation algorithms, this gives us an O(n 3)-time algorithm with approximation factor four, and an O(n log n)-time algorithm with approximation factor eight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9, 81–100 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arora, S., Grigni, M., Karger, D., Klein, P., Woloszyn, A.: A polynomial-time approximation scheme for weighted planar graph TSP. In: Proc. 9th ACM-SIAM Sympos. Discrete Algorithms, pp. 33–41 (1998)

    Google Scholar 

  3. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short, thin, and lanky. In: Proc. 27th Annu. ACM Sympos. Theory Comput., pp. 489–498 (1995)

    Google Scholar 

  4. Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph spanners. Internat. J. Comput. Geom. Appl. 5, 125–144 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. Internat. J. Comput. Geom. Appl. 7, 297–315 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Levcopoulos, C., Narasimhan, G., Smid, M.: Efficient algorithms for constructing fault-tolerant geometric spanners. In: Proc. 30th Annu. ACM Sympos. Theory Comput., pp. 186–195 (1998)

    Google Scholar 

  7. Levcopoulos, C., Östlin, A.: Linear-time heuristics for minimum weight rectangulation. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 271–283. Springer, Heidelberg (1996)

    Google Scholar 

  8. Lingas, A., Pinter, R., Rivest, R., Shamir, A.: Minimum edge length partitioning of rectilinear polygons. In: Proc. 20th Allerton Conf. Commun. Control Comput., pp. 53–63 (1982)

    Google Scholar 

  9. Rao, S.B., Smith, W.D.: Approximating geometrical graphs via ”spanners” and ”banyans”. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gudmundsson, J., Levcopoulos, C., Narasimhan, G. (1999). Approximating Minimum Manhattan Networks. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds) Randomization, Approximation, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 1999 1999. Lecture Notes in Computer Science, vol 1671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48413-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48413-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66329-4

  • Online ISBN: 978-3-540-48413-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics