Skip to main content

Causal Inference of Regulator-Target Pairs by Gene Mapping of Expression Phenotypes

  • Conference paper
Systems Biology and Regulatory Genomics (RSB 2005, RRG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4023))

Included in the following conference series:

  • 527 Accesses

Abstract

Correlations between polymorphic markers and observed phenotypes provide the basis for mapping traits in quantitative genetics. When the phenotype is gene expression, then loci involved in regulatory control can theoretically be implicated. Recent efforts to construct gene regulatory networks from genotype and gene expression data have shown that biologically relevant networks can be achieved from an integrative approach. Inspired by epistatic models of multi-locus QTL mapping, we propose a unified model of expression and genotype representing cis- and trans-acting regulation. We demonstrate the power of the model in contrast to standard interval mapping by automatically discovering specific pairs of regulator-target genes in yeast. Our approach’s generality provides a convenient framework for inducing a regulatory network topology of directed and undirected weighted edges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, M., Ball, C.A., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  2. Bing, N., Hoeschele, I.: Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics 170(2), 533–542 (2005)

    Article  Google Scholar 

  3. Brem, R.B., Kruglyak, L.: The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl. Acad. Sci. U S A 102(5), 1572–1577 (2005)

    Article  Google Scholar 

  4. Brem, R.B., Yvert, G., et al.: Genetic dissection of transcriptional regulation in budding yeast. Science 296(5568), 752–755 (2002)

    Article  Google Scholar 

  5. Chesler, E.J., Lu, L., et al.: Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37(3), 233–242 (2005)

    Article  Google Scholar 

  6. Friedman, N., Linial, M., et al.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7(3-4), 601–620 (2000)

    Article  Google Scholar 

  7. Gasch, A.P., Spellman, P.T., et al.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11(12), 4241–4257 (2000)

    Google Scholar 

  8. Hughes, T.R., Marton, M.J., et al.: Functional discovery via a compendium of expression profiles. Cell 102(1), 109–126 (2000)

    Article  Google Scholar 

  9. Lander, E.S., Botstein, D.: Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121(1), 185–199 (1989)

    Google Scholar 

  10. Li, H., Lu, L., et al.: Inferring gene transcriptional modulatory relations: a genetical genomics approach. Hum. Mol. Genet. 14(9), 1119–1125 (2005)

    Article  Google Scholar 

  11. Lynch, M., Walsh, B.: Genetics and analysis of quantitative traits. Sinauer, Sunderland, Mass. (1998), 97017666 Lynch, M., Walsh, B. Includes bibliographical references (p. 891-[948]) and indexes

    Google Scholar 

  12. Margolin, A., Banerjee, N., et al. (2004), http://www.menem.com/~ilya/digital_library/mypapers/margolin-etal-b-04.pdf

  13. Matys, V., Fricke, E., et al.: TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31(1), 374–378 (2003)

    Article  Google Scholar 

  14. Morley, M., Molony, C.M., et al.: Genetic analysis of genome-wide variation in human gene expression. Nature 430(7001), 743–747 (2004)

    Article  Google Scholar 

  15. Pe’er, D., Regev, A., et al.: Inferring subnetworks from perturbed expression profiles. Bioinformatics 17(Suppl. 1), S215–224 (2001)

    Google Scholar 

  16. Pena, J.M., Bjorkegren, J., et al.: Growing Bayesian network models of gene networks from seed genes. Bioinformatics 21(Suppl. 2), ii224–ii229 (2005)

    Google Scholar 

  17. Schadt, E.E., Monks, S.A., et al.: Genetics of gene expression surveyed in maize, mouse and man. Nature 422(6929), 297–302 (2003)

    Article  Google Scholar 

  18. Sen, S., Churchill, G.A.: A statistical framework for quantitative trait mapping. Genetics 159(1), 371–387 (2001)

    Google Scholar 

  19. Spellman, P.T., Sherlock, G., et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9(12), 3273–3297 (1998)

    Google Scholar 

  20. Steinmetz, L.M., Sinha, H., et al.: Dissecting the architecture of a quantitative trait locus in yeast. Nature 416(6878), 326–330 (2002)

    Article  Google Scholar 

  21. Yvert, G., Brem, R.B., et al.: Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat. Genet. 35(1), 57–64 (2003)

    Article  Google Scholar 

  22. Zhu, J., Lum, P.Y., et al.: An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet. Genome Res. 105(2-4), 363–374 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eleazar Eskin Trey Ideker Ben Raphael Christopher Workman

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Kulp, D., Jagalur, M. (2007). Causal Inference of Regulator-Target Pairs by Gene Mapping of Expression Phenotypes. In: Eskin, E., Ideker, T., Raphael, B., Workman, C. (eds) Systems Biology and Regulatory Genomics. RSB RRG 2005 2005. Lecture Notes in Computer Science(), vol 4023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48540-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48540-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48293-2

  • Online ISBN: 978-3-540-48540-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics