Skip to main content

Episodic Neogene Southward Growth of the Andean Subduction Orogen between 30°S and 40°S — Plate Motions, Mantle Flow, Climate, and Upper-Plate Structure

  • Chapter
The Andes

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

The tectonic shortening of the South American upper plate that formed the Andean subduction orogen shows significant along-strike variations in magnitude and timing. Shortening in the Central Andes started in the Eocene, whereas the contraction of the Southern Central Andes at 30° S started only in the Early Miocene and then migrated southwards. Upper-plate shortening reached 38° S in the Late Miocene and tapered off at around 40° S. At the beginning of the Pliocene, contraction in the Southern Central Andes significantly slowed and eventually changed to transtensional conditions south of about 33.5° S, where the intersection of the Juan Fernandez Ridge results in a radical change in subduction mechanics. A southward decrease of both the duration and the average rate of contraction explains the observed decrease of the absolute Neogene shortening from 160 km at 30° S to 15 km at 38° S.

The southward growth of the subduction orogen in the Mid-Late Miocene is not related to an increase of the relative Nazca-South America convergence but takes place during an acceleration of the westward motion of the South American Plate (overriding) with respect to the hot-spot reference frame. This suggests that overriding is the main plate kinematic driving mechanism for subduction orogeny.

Kinematical considerations show that overriding is converted either into plate boundary deformation or into subduction-zone rollback. From the correlation of the deformation time-series with climatic, plate kinematic and geological data we suggest that the latitudinal and temporal variations of three factors can explain the varying proportions of rollback and upper plate shortening along the orogen. These are (1) the distance to the southern edge of the subducting Nazca slab, (2) the strength of the plate interface and (3) the strength of the upper-plate.

From the fact that subduction orogeny expands southward during an acceleration of overriding we conclude that contraction of the upper plate in the more southerly regions required faster overriding velocities than in the north. This is most likely the result of easier rollback in the south which is enabled by the proximity of the Drake Passage or — after initiation of the Chile Rise triple junction at 14 Ma — the opening of slab windows under Patagonia that facilitate the transfer of mantle material from the sub-slab region to the slab wedge.

The almost simultaneous post-Miocene slowing of upper-plate shortening south of the Juan Fernandez Ridge intersection can be best explained by Late Cenozoic increased sediment flux to the trench that ultimately reduced the strength of the plate interface. The initial Mid-Miocene exhumation of the main source area for trench sediments in the Patagonian Andes was tectonically controlled by the northward migrating Chile rise collision and not related to global cooling. However, the rapid spreading of Patagonian ice sheets after 7 Ma on the previously uplifted topography most likely led to a sudden increase of the average erosion rates and sediment flux into the trench. This increase and the blocking of the sediment dispersal within the trench by the Juan Fernandez Ridge enabled the accumulation of a thick trench fill. Hence, the pronounced Pliocene slowing of upper-plate contraction by sediment induced lubrication and weakening of the plate interface in this region is most likely the combined result of global climate change, tectonic uplift of the sediment source region and limited sediment dispersal in the trench.

Once contraction started, deformation in the upper plate became focused in pre-Andean sedimentary basins and shortening rates in these basins were twice those in thick-skinned belts. Hence, we confirm that inherited soft regions in the upper-plate accelerate orogenic shortening. Subduction zone shallowing as a result of convergence-parallel ridge subduction weakens the upper plate thermally and has a similar accelerating effect on subduction orogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allmendinger RW, Gubbels T (1996) Pure and simple shear plateau uplift, Altiplano-Puna, Argentina and Bolivia. Tectonophysics 259(1–3):1–13

    Article  Google Scholar 

  • Allmendinger RW, Figueroa D, Snyder D, Beer J, Mpodozis C, Isacks BL (1990) Foreland shortening and crustal balancing in the Andes at 30°S latitude. Tectonics 9(4):789–809

    Google Scholar 

  • Astini RA, Dávilla FM (2004) Ordovician back arc foreland and Ocloyic thrust belt development on the western Gondwana margin as a response to Precordillera terrane accretion. Tectonics 23:1–19

    Article  Google Scholar 

  • Astini RA, Benedetto JL, Vaccari NE (1995) The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted, and collided terrane: a geodynamic model. Geol Soc Am Bull 107(3):253–273

    Article  Google Scholar 

  • Götze H-J, Alten M, Burger H, Goni P, Melnick D, Mohr S, Munier K, Ott N, Reutter K, Schmidt S (2006) Data management of the SFB 267 for the Andes — from ink and paper to digital databases. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 539–556, this volume

    Google Scholar 

  • Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16(3):489–503

    Article  Google Scholar 

  • Barazangi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca Plate beneath South America. Geology 4(11):686–692

    Article  Google Scholar 

  • Barker PF (2001) Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation. Earth Sci Rev 55(1–2):1–39

    Article  Google Scholar 

  • Barker PF, Burrell J (1977) The opening of Drake Passage. Marine Geol 25(1–3):15–34

    Article  Google Scholar 

  • Barrientos S, Vera E, Alvarado P, Monfret T (2004) Crustal seismicity in central Chile. J S Am Earth Sci 16(8):759–768

    Article  Google Scholar 

  • Bercowski F, Ruzycki L, Jordan TE, Zeitler P, Caballero MM, Perez I (1993) Litofacies y Edad Isotopica de la Secencia la Chilca y su Significado Paleografico para el Neogeno de Precordillera. XII Congreso Geologico Argentino, Actas 1:212–217

    Google Scholar 

  • Bice KL, Scotese CR, Seidov D, Barron EJ (2000) Quantifying the role of geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models. Palaeogeog Palaeoclimat Palaeoecol 161(3–4):295–310

    Article  Google Scholar 

  • Bock B, Bahlburg H, Woerner G, Zimmermann U (2000) Tracing crustal evolution in the southern Central Andes from late Precambrian to Permian with geochemical and Nd and Pb isotope data. J Geol 108(5), 515–535

    Article  Google Scholar 

  • Brooks BA, Bevis M, Smalley R Jr, Kendrick E, Manceda R, Lauria E, Manturana R, Araujo M (2003) Crustal motion in the Southern Andes (26°–36°S): do the Andes behave like a microplate? Geochem Geophys Geosyst 4(10): doi 10.1029/2003GC000505

    Google Scholar 

  • Cahill TA, Isacks BL (1992) Seismicity and shape of the subducted Nazca Plate. J Geophys Res B Solid Earth Planet 97(12):17503–17529

    Google Scholar 

  • Caminos R, Llambias EJ, Rapela CW, Parica CA (1988) Late Paleozoic-Early Triassic magmatic activity of Argentina and the significance of new Rb-Sr ages from northern Patagonia. J S Am Earth Sci 1(2):137–145

    Article  Google Scholar 

  • Campetella CM, Vera CS (2002) The influence of the Andes mountains on the South American low-level flow. Geophys Res Lett 29(17): doi 10.1029/2002GL015451

    Google Scholar 

  • Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the southern Chile Trench. J Geophys Res B 91(1):471–496

    Google Scholar 

  • Cande SC, Leslie RB, Parra JC, Hobart M (1987) Interaction between the Chile Ridge and Chile Trench: geophysical and geothermal evidence. J Geophys Res B Solid Earth Planet 92(1):495–520

    Google Scholar 

  • Carpinelli A (2000) Analisis estratigrafico, paloeambiental, estructural, y modelo tectono-estratigrafico de la Cuenca de Cura-Mallin VIII y IX Region, Chile, Provincia del Neuquen, Argentina. Master thesis, Universidad de Concepcion, Chile

    Google Scholar 

  • Cembrano J (1992) The Liquine-Ofqui fault zone (LOFZ) in the Province of Palena: field and microstructural evidence of a ductilebrittle dextral shear zone. Departamento de Geologia, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Serie Comunicaciones 43:3–27

    Google Scholar 

  • Cembrano J, Herve F, Lavenu A (1996) The Liquine Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. In: Geodynamics of the Andes 259:1–3. Elsevier, Amsterdam, pp 55–66

    Google Scholar 

  • Cembrano J, Schermer E, Lavenu A, Sanhueza A (2000) Contrasting nature of deformation along an intra-arc shear zone, the Liquine-Ofqui fault zone, southern Chilean Andes. Tectonophysics 319(2):129–149

    Article  Google Scholar 

  • Cembrano J, Lavenu A, Reynolds P, Arancibia G, Lopez G, Sanhueza, A (2002) Late Cenozoic transpressional ductile deformation north of the Nazca-South America-Antarctica triple junction. Tectonophysics 354(3–4):289–314

    Article  Google Scholar 

  • Charrier R, Baeza O, Elgueta S, Flynn JJ, Gans P, Kay SM, Munoz N, Wyss AR, Zurita E (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33°–36°S). J S Am Earth Sci 15(1):117–139

    Article  Google Scholar 

  • Chinn DS, Isacks BL (1983) Accurate source depths and focal mechanisms of shallow earthquakes in western South America and in the New Hebrides island arc. Tectonics 2(6):529–563

    Google Scholar 

  • Cingolani C, Dalla Salda LH, Herve F, Munizaga F, Pankhurst RJ, Parada MA, Rapela CW (1991) The magmatic evolution of northern Patagonia: new impressions of pre-Andean and Andean tectonics. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geol Soc Am, Boulder CO, pp 29–44

    Google Scholar 

  • Cladouhos TT, Allmendinger RW, Coira B, Farrar E (1994) Late Cenozoic deformation in the central Andes: fault kinematics from the northern Puna, northwestern Argentina and southwestern Bolivia. J S Am Earth Sci 7(2):209–228

    Article  Google Scholar 

  • Cobbold PR, Rossello EA (2003) Aptian to Recent compressional deformation, foothills of the Neuquen Basin, Argentina. Marine Petrol Geol 20(5):429–443

    Article  Google Scholar 

  • Coughlin TJ, O’Sullivan PB, Kohn BP, Holcombe RJ (1998) Apatite fission-track thermochronology of the Sierras Pampeanas, central western Argentina: implications for the mechanism of plateau uplift in the Andes. Geology 26(11):999–1002

    Article  Google Scholar 

  • Creager KC, Chiao LY, Winchester JP, Engdahl ER (1995) Membrane strain rates in the subducting plate beneath South America. Geophys Res Lett 22(16):2321–2324

    Article  Google Scholar 

  • Cristallini EO, Cangini A (1993) Estratigrafia y estructura de las nacientes del rio Volcan, Alta Cordillera de San Juan. XII Congreso Geologico Argentino, Actas 3, pp 85–92

    Google Scholar 

  • Cristallini EO, Ramos VA (2000) Thick-skinned and thin-skinned thrusting in the La Ramada fold and thrust belt: crustal evolution of the High Andes of San Juan, Argentina (32°S). Tectonophysics 317(3–4):205–235

    Article  Google Scholar 

  • Crowley TJ, Zachos JC (2000) Comparison of zonal temperature profiles of past warm time periods. In: Huber B, MacLeod K, Wing S (eds) Warm climates in Earth history. Cambridge University Press

    Google Scholar 

  • Davies JS, Roeske SM, McClelland WC, Snee LW (1999) Closing the ocean between Precordillera terrane and Chilenia: Early Devonian ophiolites emplacement and deformation in the southwest Precordillera. In: Ramos VA, Keppie JD (eds) Laurentia-Gondwana connections before Pangea. Geol Soc Am Spec P 336:115–138

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194

    Article  Google Scholar 

  • Dewey JF, Lamb SH (1992) Active tectonics of the andes. Tectonophysics 205:79–95

    Article  Google Scholar 

  • Diraison M, Cobbold PR, Gabais D, Rosello EA (1997) Magellan Strait: part of a Neogene rift system. Geology 25:703–706

    Article  Google Scholar 

  • Diraison M, Cobbold PR, Rossello EA, Amos AJ (1998) Neogene dextral transpression due to oblique convergence across the Andes of northwestern Patagonia, Argentina. J S Am Earth Sci 11(6):519–532

    Article  Google Scholar 

  • Drake RE (1976) The chronology of Cenozoic igneous and tectonic events in the central Chilean Andes. In: Proceedings of the symposium on Andean and Antarctic volcanology problems, Santiago, Chile, September 1974. Int Assoc Volcanol and Chem Earth’s Interior, Santiago, Chile, pp 670–697

    Google Scholar 

  • Eagles G, Livermore RA, Fairhead JD, Morris P (2005) Tectonic evolution of the west Scotia Sea. J Geophys Res B110: doi 10.1029/2004JB0003154

    Google Scholar 

  • Egenhoff SO, Lucassen F (2003) Chemical and isotopic composition of Lower to Upper Ordovician sedimentary rocks (Central Andes/South Bolivia): implications for their source. J Geol 111(4):487–497

    Article  Google Scholar 

  • Elger K, Oncken O, Glodny J (2005) Plateau-style accumulation of deformation: Southern Altiplano, Tectonics 24(4): doi TC4020

    Google Scholar 

  • Fauqué L, Cortés JM, Folguera A, Etcheverria M (2000) Avalanchas de rocas asociadas a neotectonica en el valle del rio Mendoza, al sur de Uspallata. Rev Asoc Geol Argentina 55:419–423

    Google Scholar 

  • Flynn JJ, Novacek MJ, Dodson HE, Frassinetti D, McKenna MC, Norell MA, Sears KE, Swisher CC, Wyss AR (2002) A new fossil mammal assemblage from the southern Chilean Andes: implications for geology, geochronology, and tectonics. J S Am Earth Sci 15(3):285–302

    Article  Google Scholar 

  • Folguera A, Iannizzotto NF (2004) The lagos La Plata and Fontana fold-and-thrust belt: Long-lived orogenesis at the edge of western Patagonia. J S Am Earth Sci 16(7):541–566

    Article  Google Scholar 

  • Folguera A, Melnick D, Ramos VA (2002) Particion de la deformation en la zona del arco volcanico de los Andes neuquinos (36–39°S) en los ulitmos 30 millones des anos. Rev Geol Chile 29(2):227–240

    Google Scholar 

  • Folguera A, Ramos VA, Hermanns R, Naranjo J (2004) Neotectonics in the foothills of the southernmost central Andes (37°–38°S): evidence of strike-slip displacement along the Antinir-Copahue fault zone. Tectonics 23: doi 10.10029/2003TC001533

    Google Scholar 

  • Forsythe R, Nelson E (1985) Geological manifestations of ridge collision: evidence from the Golfo de Penas-Taitao basin, southern Chile. Tectonics 4(5):477–495

    Google Scholar 

  • Gephart JW (1994) Topography and subduction geometry in the Central Andes: clues to the mechanics of a noncollisional orogen. J Geophys Res 99(B6):12279–12288

    Article  Google Scholar 

  • Ghiglione MC, Ramos VA (2005) Progression of deformation and sedimentation in the southernmost Andes. Tectonophysics 405(1–4):25–46

    Article  Google Scholar 

  • Giambiagi LB, Alvarez PP, Godoy E, Ramos VA (2003) The control of pre-existing extensional structures on the evolution of the southern sector of the Aconcagua fold and thrust belt, southern Andes. Tectonophysics 369(1–2):1–19

    Article  Google Scholar 

  • Giambiagi LB, Ramos VA (2002) Structural evolution of the Andes in a transitional zone between flat and normal subduction (33°30′–33°45′S), Argentina and Chile. J S Am Earth Sci 15(1):101–116

    Article  Google Scholar 

  • Giambiagi LB, Tunik MA, Ghiglione M (2001) Cenozoic tectonic evolution of the Alto Tunuyan foreland basin above the transition zone between the flat and normal subduction segment (33°30′–34°S), western Argentina. J S Am Earth Sci 14(7):707–724

    Article  Google Scholar 

  • Glodny J, Echtler H, Figueroa O, Franz G, Gräfe K, Kemnitz H, Kramer W, Krawczyk C, Lohrmann J, Lucassen F, Melnick D, Rosenau M, Seifert W (2006) Long-term geological evolution and mass-flow balance of the South-Central Andes. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 401–428, this volume

    Google Scholar 

  • Godoy E, Yañez G, Vera E (1999) Inversion of an Oligocene volcanotectonic basin and uplifting of its superimposed Miocene magmatic arc in the Chilean Central Andes: first seismic and gravity evidences. Tectonophysics 306(2):217–236

    Article  Google Scholar 

  • Gonzalez E (1989) Hydrocarbon Resources in the Coastal Zone of Chile. In: Ericksen GE, Cañas Pinochet MT, Reinemund JA (eds) Geology of the Andes and its relation to hydrocarbon and mineral resources. Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, Houston, Texas, pp 383–404

    Google Scholar 

  • Gonzalez-Bonorino G, Kraemer P, Re G (2001) Andean Cenozoic foreland basins: a review. J S Am Earth Sci 14(7):651–654

    Article  Google Scholar 

  • Gorring ML, Kay SM, Zeitler PK, Ramos VA, Rubiolo D, Fernandez MI, Panza JL (1997) Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile Triple Junction. Tectonics 16(1):1–17

    Article  Google Scholar 

  • Gorring M, Singer B, Gowers J, Kay SM (2003) Plio-Pleistocene basalts from the Meseta del Lago Buenos Aires, Argentina: evidence for asthenosphere-lithosphere interactions during slab window magmatism. Chem Geol 193(3–4):215–235

    Article  Google Scholar 

  • Graefe K, Glodny J, Seifert W, Rosenau M, Echtler H (2002) Apatite fission track thermochronology of granitoids at the south Chilean active continental margin (37°–42°S): implications for denudation, tectonics and mass transfer since the Cretaceous. In: 5th International Symposium on Andean Geodynamics, Toulouse, France, pp 275–278

    Google Scholar 

  • Grier ME, Salfity JA, Allmendinger RW (1991) Andean reactivation of the Cretaceous Salta Rift, northwestern Argentina. J S Am Earth Sci 4(4):351–372

    Article  Google Scholar 

  • Gutscher MA (2002) Andean subduction styles and their effect on thermal structure and interplate coupling. J S Am Earth Sci 15:3–10

    Article  Google Scholar 

  • Gutscher MA, Maury R, Eissen JP, Bourdon E (2000a) Can slab melting be caused by flat subduction? Geology 28(6):535–538

    Article  Google Scholar 

  • Gutscher MA, Spakman W, Bijwaard H, Engdahl ER (2000b) Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin. Tectonics 19(5):814–833

    Article  Google Scholar 

  • Handschumacher D (1976) Post-Eocene plate tectonics of the eastern Pacific. Geophysical Monograph 19: the geophysics of the Pacific Ocean basin and its margin. 177–202

    Google Scholar 

  • Heredia N, Rodriguez Fernandez LR, Gallastegui G, Busquets P, Colombo F (2002) Geological setting of the Argentine Frontal Cordillera in the flat-slab segment (30°00′–31°30′ S latitude). J S Am Earth Sci 15(1):79–99

    Article  Google Scholar 

  • Herve F (1988) Late Paleozoic subduction and accretion in southern Chile. Episodes 11(3):183–188

    Google Scholar 

  • Herve F, Munizaga F, Parada MA, Brook M, Pankhurst RJ, Snelling NJ, Drake R (1988) Granitoids of the Coast Range of central Chile: geochronology and geologic setting. J S Am Earth Sci 1(2):185–194

    Article  Google Scholar 

  • Herve F, Pankhurst RJ, Demant A, Ramirez E (1996) Age and Al-in-Hornblende geobarometry in the north patagonian batholith, Aysen, Chile. Third International Symposium on Andean Geodynamics, St Malo 1996, pp 579–582

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98(4):455–489

    Article  Google Scholar 

  • Hindle D, Kley J, Klosko E, Stein S, Dixon T, Norabuena E (2002) Consistency of geologic and geodetic displacements during Andean orogenesis. Geophys Res Lett 29(8): doi 10.1029/2001GL013757

    Google Scholar 

  • Hoffmann-Rothe A, Kukowski N, Dresen G, Echtler H, Oncken O, Klotz J, Scheuber E, Kellner A (2006) Oblique convergence along the Chilean margin: partitioning, margin-parallel faulting and force interaction at the plate interface. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 125–146, this volume

    Google Scholar 

  • Irigoyen MV, Buchan KL, Brown RL (1993) Magnetostratigraphy of Neogene Andean foreland-basin strata, lat 33°S, Mendoza Province, Argentina. Geol Soc Am Bull 112(6):803–816

    Article  Google Scholar 

  • Isacks B (1988) Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. J Geophys Res 93(B4):3211–3231

    Google Scholar 

  • Jacques JM (2004) The influence of intraplate structural accommodation zones on delineating petroleum provinces of the Sub-Andean foreland basins. Petrol Geosci 10(1):1–19

    Article  Google Scholar 

  • Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. A J Sci 286(10):737–764

    Article  Google Scholar 

  • Jordan TE, Allmendinger RW, Damanti JF, Drake RE (1993) Chronology of motion in a complete thrust belt: the Precordillera, 30–31°S, Andes Mountains. J Geol 101(2):135–156

    Article  Google Scholar 

  • Jordan TE, Tamm V, Figueroa G, Flemings PB, Richards D, Tabbutt KD, Cheatham T (1996) Development of the Miocene Manantiales forealnd basin, Principal Cordillera, San Juan, Argentina. Rev Geol Chile 23(1):43–79

    Google Scholar 

  • Jordan TE, Burns WM, Veiga R, Pangaro F, Copeland P, Kelley S, Mpodozis C (2001a) Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes. Tectonics 20(3):308–324

    Article  Google Scholar 

  • Jordan TE, Schlunegger F, Cardozo N (2001b) Unsteady and spatially variable evolution of the Neogene Andean Bermejo foreland basin, Argentina. J S Am Earth Sci 14(7):775–798

    Article  Google Scholar 

  • Kelm U, Helle S, Cisternas ME, Méndez D (1994) Diagenetic character of the Tertiary basin between Los Angeles and Osorno, southern Chile. Rev Geol Chile 21(2):241–252

    Google Scholar 

  • Kemnitz H, Kramer W, Rosenau M (2005) Jurassic to Tertiary tectonic, volcanic, and sedimentary evolution of the southern Andean intra-arc zone, Chile (38–39°S): a survey. N Jb Geol Paläont Abh 236(1/2):19–42

    Google Scholar 

  • Kincaid C, Griffiths RW (2004) Variability in flow and temperatures within mantle subduction zones. Geochem Geophys Geosyst

    Google Scholar 

  • Kley J (1999) Geologic and geometric constraints on a kinematic model of the Bolivian orocline. J S Am Earth Sci 12(2):221–235

    Article  Google Scholar 

  • Kley J, Monaldi CR (1998) Tectonic shortening and crustal thickness in the Central Andes: how good is the correlation? Geology 26(8):723–726

    Article  Google Scholar 

  • Kley J, Vietor T (2005) Subduction and mountain building in the Central Andes. In: Dixon T, Moore J (eds) Interplate subduction zone seismogenesis. MARGINS Theoretical and Experimental Earth Science Series, Vol 2

    Google Scholar 

  • Kley J, Monaldi C, Salfity JA (1996) Along-strike segmentation of the Andean foreland. Third International Symposium on Andean Geodynamics, St Malo, pp 403–406

    Google Scholar 

  • Kley J, Monaldi CR, Salfity JA (1999) Along-strike segmentation of the Andean foreland: causes and consequences. Tectonophysics 301(1–2):75–94

    Article  Google Scholar 

  • Klotz J, Khazaradze G, Angermann D, Reigber C, Perdomo R, Cifuentes O (2001) Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes. Earth Planet Sci Lett 193(3–4):437–446

    Article  Google Scholar 

  • Klotz J, Abolghasem A, Khazaradze G, Heinze B, Vietor T, Hackney R, Bataille K, Maturana R, Viramonte J, Perdomo R (2006) Long-term signals in the present-day deformation field of the Central and Southern Andes and constraints on the viscosity of the Earth’s upper mantle. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 65–90, this volume

    Google Scholar 

  • Kraemer PE (2003) Orogenic shortening and the origin of the Patagonian orocline (56° S.Lat). J S Am Earth Sci 15:731–748

    Article  Google Scholar 

  • Kraemer PE, Zulliger GA (1994) Sedimentacion Cenozoica sinorogenica en la faja plegada Andina a los 35 degrees S Malargue, Mendoza, Argentina. VII Congreso Geologíco Chileno, Actas 7(1), pp 460–464

    Google Scholar 

  • Kraemer B, Adelmann D, Alten M, Schnurr W, Erpenstein K, Kiefer E, Van den Bogaard P, Gorler K (1999) Incorporation of the Paleogene foreland into the Neogene Puna plateau: the Salar de Antofalla area, NW Argentina. J S Am Earth Sci 12(2):157–182

    Article  Google Scholar 

  • Kraemer PE, Silvestro J, Davila F (2000) Kinematic of the Andean fold-belt infered from the geometry and age of syntectonic sediments, Malarguee (35°30′S), Mendoza, Argentina. Annual Meeting of the Geological Society of America 2000, 32:7

    Google Scholar 

  • Lagabrielle Y, Suarez M, Rossello EA, Herail G, Martinod J, Regnier M, De la Cruz R (2004) Neogene to Quaternary tectonic evolution of the Patagonian Andes at the latitude of the Chile Triple Junction. Tectonophysics 385(1–4):211–241

    Article  Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425(6960):792–797

    Article  Google Scholar 

  • Lamy F, Kaiser J, Ninnemann U, Hebbeln D, Arz HW, Stoner J (2004) Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304:1959–1962

    Article  Google Scholar 

  • Laursen J, Scholl DW, von Huene R (2002) Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamont subduction. Tectonics 21(5):2/1–2/27

    Article  Google Scholar 

  • LeRoux JP, Elgueta S (2000) Sedimentologic development of a late Oligocene-Miocene forearc embayment, Valdivia Basin Complex, southern Chile. Sedimentary Geology 130(1–2):27–44

    Article  Google Scholar 

  • Linares E, Ostera HA, Mas LC (1999) Cronologia potasio-argon del complejo efusivo Copahue-Caviahue, Provincia del Neuquen. Rev Asoc Geol Argentina 54(3):240–247

    Google Scholar 

  • Livermore R, Nankivell A, Eagles G, Morris P (2005) Paleogene opening of Drake Passage. Earth Planet Sci Lett 236(1–2):459–470

    Article  Google Scholar 

  • Lodolo E, Menichetti M, Bartole R, Ben AZ, Tassone A, Lippai H (2003) Magallanes-Fagnano continental transform fault (Tierra de Fuego, southernmost South America). Tectonics 22(6): doi10.1029/2003TC001500

    Google Scholar 

  • Lucassen F, Becchio R (2003) Timing of high-grade metamorphism: Early Palaeozoic U-Pb formation ages of titanite indicate longstanding high-T conditions at the western margin of Gondwana (Argentina, 26–29°S). J Metamorph Geol 21(7):649–662

    Article  Google Scholar 

  • Lucassen F, Harmon R, Franz G, Romer RL, Becchio R, Siebel W (2002) Lead evolution of the pre-Mesozoic crust in the Central Andes (18–27°): progressive homogenisation of Pb. Chem Geol 186(3–4):183–197

    Article  Google Scholar 

  • Maksaev V, Moscoso R, Mpodozis C, Nasi C (1984) Las unidades volcanicas y plutonicas del Cenozoico Superior en la alta Cordillera del Norte Chico (29°–31°S): Geologia, Alteracion Hidrothermal y Mineralizacion. Rev Geol Chile 21:11–51

    Google Scholar 

  • Malumian N, Ramos VA (1984) Magmatic intervals, transgression-regression cycles and oceanic events in the Cretaceous and Tertiary of southern South America. Earth Planet Sci Lett 67(2):228–237

    Article  Google Scholar 

  • Manceda R, Figueroa D (1995) Inversion of the Mesozoic Neuquen Rift in the Malarguee fold and thrust belt, Mendoza, Argentina. In: Petroleum basins of South America 62. Am Assoc Petr Geologists, Tulsa OK, pp 369–382

    Google Scholar 

  • Marrett R, Strecker MR (2000) Response of intracontinental deformation in the Central Andes to late Cenozoic reorganization of South American plate motions. Tectonics 19(3):452–467

    Article  Google Scholar 

  • Melnick D, Rosenau M, Folguera A, Echtler H (2006) Neogene tectonic evolution of the Neuquén Andes western flank. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). Geol Soc Am Spec P 407:73–95

    Google Scholar 

  • Mercer JH, Sutter JF (1982) Late Miocene-earliest Pliocene glaciation in southern Argentina: implications for global ice-sheet history. Palaeogeog Palaeoclimat Palaeoecol 38(3–4):185–206

    Article  Google Scholar 

  • Montgomery DR, Balco G, Willett SD (2001) Climate, tectonics, and the morphology of the Andes. Geology 29(7):579–582

    Article  Google Scholar 

  • Mordojovich C (1981) Sedimentary basins of Chilean Pacific offshore. In: Energy resources of the Pacific region. Studies in Geology 12. Am Assoc Petr Geologists, Tulsa OK, pp 63–82

    Google Scholar 

  • Mpodozis C, Ramos VA (1989) The Andes of Chile and Argentina. In: Ericksen G, Canas Pinochet M, Reinemund J (eds) Geology of the Andes and its relation to hydrocarbon and mineral resources. Earth Science Series 11, Circum-Pacific Council fo Energy and Mineral Resources, Houston TX, pp 59–89

    Google Scholar 

  • Mueller RD, Roest WR, Royer JY, Gahagan LM, Sclater JG (1997) Digital isochrons of the world’s ocean floor. J Geophys Res 102:3211–3214

    Article  Google Scholar 

  • Nelson E, Forsythe R, Arit I (1994) Ridge collision tectonics in terrane development. J S Am Earth Sci 7(3–4):271–278

    Article  Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Research 21:1–25

    Google Scholar 

  • Nielsen SN, Frassinetti D, Bandel K (2004) Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of central Chile. J S Am Earth Sci 17(1):73–88

    Article  Google Scholar 

  • Niemeyer H, Munoz JA (1983) Carta Geologica de Chile 1:250.000, Hoja Laguna de la Laja. Servicio Nacional de Geologia y Mineria, Santiago

    Google Scholar 

  • Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemmann K (2006) Deformation of the central Andean upper plate system — facts, fiction, and constraints for plateau models. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 3–28, this volume

    Google Scholar 

  • Pankhurst RJ, Herve F (1994) Granitoid age distribution and emplacement control in the North Patagonian batholith in Aysen (44°–47°S). VII Congreso Geologico Chileno, Actas 2, pp 1409–1413

    Google Scholar 

  • Pankhurst RJ, Rapela CW, Saavedra J, Baldo E, Dahlquist J, Pascua I, Fanning CM (1998) The Famatinian magmatic arc in the central Sierras Pampeanas: an Early to Mid-Ordovician continental arc on the Gondwana margin. In: Pankhurst RJ, Rapela CW (eds) The proto-Andean margin of Gondwana. Geol Soc London Spec Pub 142, pp 343–367

    Google Scholar 

  • Parada MA (1990) Granitoid plutonism in central Chile and its geodynamic implications: a review. In: Plutonism from Antarctica to Alaska 241. Geol Soc Am, Boulder CO, pp 51–66

    Google Scholar 

  • Parada MA, Lahsen A, Palacios C (2000) The Miocene plutonic event of the Patagonian Batholith at 44°30′S: thermochronological and geobarometric evidence for melting of a rapidly exhumed lower crust. Trans Royal Soc Edinburgh Earth Sci 91(1–2):169–179

    Google Scholar 

  • Pardo Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since late Cretaceous time. Tectonics 6(3):233–248

    Google Scholar 

  • Pearce JA, Leat PT, Barker PF, Millar IL (2001) Geochemical tracing of Pacific-to-Atlantic upper-mantle flow through the Drake Passage. Nature 410(6827):457–460

    Article  Google Scholar 

  • Pilger RH (1981) Plate reconstructions, aseismic ridges, and lowangle subduction beneath the Andes. Geol Soc Am Bull 92(7–1):448–456

    Article  Google Scholar 

  • Radic JP, Rojas L, Carpinelli A, Zurita E (2002) Evolucion tectonica de la Cuenca Terciaria de Cura-Mallin, region cordillerana Chileno Argentina (36°30’–39°00’ S). Actas Del XV Congreso Geologica Argentino, El Calafate

    Google Scholar 

  • Ramos VA (1988) Late Proterozoic-Early Paleozoic of South America — a collisional history. Episodes 11(3):168–173

    Google Scholar 

  • Ramos VA (1989) Andean Foothills structures in northern Magallanes Basin, Argentina. AAPG Bulletin 73(7):887–903

    Google Scholar 

  • Ramos VA (2005) Seismic ridge subduction and topography: Foreland deformation in the Patagonian Andes. Tectonophysics 399(1–4):73–86

    Article  Google Scholar 

  • Ramos VA, Cristallini EO (1995) Perfil estructural de la Precordillera a lo largo del Rio San Juan. In: Andean Thrust Tectonics Symposium Field Guide, pp 1–42

    Google Scholar 

  • Ramos VA, Kay SM (1991) Triassic rifting and associated basalts in the Cuyo Basin, central Argentina. In: Andean magmatism and its tectonic setting. Geol Soc Am Spec P 265, pp 79–91

    Google Scholar 

  • Ramos VA, Kay SM (1992) Southern Patagonian plateau basalts and deformation: backarc testimony of ridge collisions. Tectonophysics 205(1–3):261–282

    Article  Google Scholar 

  • Ramos VA, Keppie JD (1999) Laurentia-Gondwana connections before Pangea. Geol Soc Am Spec P 336

    Google Scholar 

  • Ramos VA, Vujovich G (2000) Hoja Geologica San Juan, escala 1:250.000. Servicio Geologico Minero Argentino

    Google Scholar 

  • Ramos VA, Jordan TE, Allmendinger R, Mpodozis C, Kay SM, Cortes JM, Palma M (1986) Paleozoic Terranes of the Central Argentine-Chilean Andes. Tectonics 5(6):855–880

    Google Scholar 

  • Ramos VA, Cegarra M, Cristallini EO (1996) Cenozoic tectonics of the high Andes of west-central Argentina (30–36°S latitude). Tectonophysics 259(1–3):185–200

    Article  Google Scholar 

  • Ramos VA, Alvarez PP, Aguirre Urreta MB, Godoy E (1997) La Cordillera Principal a la latitud del paso Nieves Negras (22°50′S), Chile-Argentina. VIII Congreso Geológico Chileno, Actas 3, pp 1704–1708

    Google Scholar 

  • Ramos VA, Cristallini EO, Perez DJ (2002) The Pampean flat-slab of the Central Andes. J S Am Earth Sci 15(1):59–78

    Article  Google Scholar 

  • Rapela CW, Kay SM (1988) Late Paleozoic to Recent magmatic evolution of northern Patagonia. Episodes 11(3):175–182

    Google Scholar 

  • Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning CM (1998) The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Cordoba. In: Pankhurst Rj, Rapela CW (eds) The proto-Andean margin of Gondwana. Geol Soc Spec Pub 142, pp 181–217

    Google Scholar 

  • Reutter K-J (1974) Entwicklung und Bauplan der chilenischen Hochkordillere im Bereich 29° suedlicher Breite. N Jb Geol Paläont 146(2):153–178

    Google Scholar 

  • Reynolds JH, Jordan TE, Johnson NM, Damanti JF, Tabbutt KD (1990) Neogene deformation of the flat-subduction segment of the Argentine-Chilean Andes: magnetostratigraphic constraints from Las Juntas, La Rioja province, Argentina. Geol Soc Am Bull 102(12):1607–1622

    Article  Google Scholar 

  • Rosenau M (2004) Tectonics of the Southern Andean Intra-arc Zone (38°–42°S). PhD thesis, Freie Universität Berlin, http://www.diss.fu-berlin.de/2004/280/

    Google Scholar 

  • Rousse S, Gilder S, Farber D, McNulty B, Patriat P, Torres V, Sempere T (2003) Paleomagnetic tracking of mountain building in the Peruvian Andes since 10 Ma. Tectonophysics

    Google Scholar 

  • Russo RM, Silver PG (1994) Trench-parallel flow beneath the Nazca Plate from seismic anisotropy. Science 263(5150):1105–1111

    Article  Google Scholar 

  • Russo RM, Silver PG (1996) Cordillera formation, mantle dynamics, and the Wilson cycle. Geology 24(6):511–514

    Article  Google Scholar 

  • Sato AM, Tickyj H, Llambias EJ, Sato K (2000) The Las Matras tonalitic-trondhjemitic pluton, central Argentina: Grenvillian-age constraints, geochemical characteristics, and regional implications. J S Am Earth Sci 13(7):587–610

    Article  Google Scholar 

  • Schmidt CJ, Astini RA, Costa CH, Gardini CE, Kraemer PE (1994) Cretaceous rifting, alluvial fan sedimentation, and Neogene inversion, southern Sierras Pampeanas, Argentina. In: Tankard AJ, Suarez Soruco R, Welsing HJ (eds) Petroleum basins of South America. Am Assoc Petr Geologists Mem 62, pp 341–35

    Google Scholar 

  • Seifert W, Rosenau M, Echtler H (2005) The evolution of the South Central Chile magmatic arcs: crystallization depths of granitoids estimated by hornblende geothermobarometry — implications for mass transfer processes along the active continental margin. N Jb Geol Paläont Abh 236(1/2):115–127

    Google Scholar 

  • Silver PG, Russo RM, Lithgow BC (1998) Coupling of South American and African Plate motion and plate deformation. Science 279(5347):60–63

    Article  Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J S Am Earth Sci 11(3):211–215

    Article  Google Scholar 

  • Steinmann G (1929) Geologie von Peru. Karl Winter, Heidelberg

    Google Scholar 

  • Steppuhn A (2002) Climate and climate processes during the Upper Miocene — sensitivity studies with coupled general circulation models. PhD thesis, Universität Tübingen, http://w210.ub.uni-tuebingen.de/dbt/volltexte/2002/533/

    Google Scholar 

  • Suarez M, Emparan C (1995) The stratigraphy, geochronology and paleophysiography of a Miocene fresh-water interarc basin, southern Chile. J S Am Earth Sci 8(1):17–31

    Article  Google Scholar 

  • Tassara A, Yánez C (2003) Relación entre el espesor elástico de la litofera y la segmentación tectónica del margen andino (15–47°S). Rev Geol Chile 30:159–186

    Article  Google Scholar 

  • Tebbens SF, Cande SC (1997) Southeast Pacific tectonic evolution from early Oligocene to present. J Geophys Res B 102(6):12061–12084

    Article  Google Scholar 

  • Thomson SN (2002) Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42 and 46°S: an appraisal based on fission-track results from the transpressional intra-arc Liquine-Ofqui fault zone. Geol Soc Am Bull 114(9):1159–1173

    Google Scholar 

  • Thomson SN, Herve F, Stoeckhert B (2001) Mesozoic-Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes. Tectonics 20(5):693–711

    Article  Google Scholar 

  • Uliana MA, Biddle KT, Cerdan J (1989) Mesozoic extension and the formation of Argentine sedimentary basins. In: Tankard A, Balkwill H (eds) Extensional tectonics and stratigraphy of the North Atlantic margins. Am Assoc Petr Geol Mem 46, pp 599–614

    Google Scholar 

  • Vergara MM, Munoz BJ (1982) La formacion Cola de Zorro en la Alta Cordillera sudina Chilena (36–39°S): sus caracteristicas petrograficas y petrologicas: una revision. Rev Geol Chile 17:31–46

    Google Scholar 

  • Vergés J, Ramos E, Seward D, Busquets P, Colombo F (2001) Miocene sedimentary and tectonic evolution of the Andean Precordillera at 31°S, Argentina. J S Am Earth Sci 14:735–750

    Article  Google Scholar 

  • Vines RF (1990) Productive duplex imbrication at the Neuquina Basin thrust belt front, Argentina. In: Letouzey, J (ed) Petroleum and tectonics in mobile belts. Proceedings of the IFP exploration and production research conference, Paris, Ed Technip, pp 69–79

    Google Scholar 

  • Völker D, Wiedicke M, Ladage S, Gaedicke C, Reichert C, Rauch K, Kramer W, Heubeck C (2006) Latitudinal variation in sedimentary processes in the Peru-Chile trench off Central Chile. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 193–216, this volume

    Google Scholar 

  • Von Gosen W (1992) Structural evolution of the Argentine Precordillera: the Rio San Juan section. J Struct Geol 14(6):643–667

    Article  Google Scholar 

  • Von Gosen W (2003) Thrust tectonics in the North Patagonian Massif (Argentina): implications for a Patagonia plate. Tectonics 22(1):5/1–5/33

    Article  Google Scholar 

  • Vujovich GI, Kay SM (1998) A Laurentian Grenville-age oceanic arc/back-arc terrane in the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina. In: Pankhurst RJ, Rapela, CW (eds) The proto-Andean margin of Gondwana. Geol Soc Spec Pub 142:159–179

    Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of Generic Mapping Tools released. EOS 79(47):579

    Article  Google Scholar 

  • Wilson DS (1993) Confirmation of the astronomical calibration of the magnetic polarity timescale from sea-floor spreading rates. Nature 364(6440):788–790

    Article  Google Scholar 

  • Yañez GA, Ranero CR, von Huene R, Diaz J (2001) Magnetic anomaly interpretation across the southern Central Andes (32°-34°S): the role of the Juan Fernandez Ridge in the late Tertiary evolution of the margin. J Geophys Res B 106(4):6325–6345

    Article  Google Scholar 

  • Yuan X, Asch G, Bataille K, Bock G, Bohm M, Echtler H, Kind R, Oncken O, Wölbern I (2006) Deep seismic images of the Southern Andes. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). Geol Soc Am Spec P 407, in press

    Google Scholar 

  • Zachos J, Pagani H, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693

    Article  Google Scholar 

  • Zapata TR, Allmendinger RW (1996) Growth stratal records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo Basin, Argentina. Tectonics 15(5):1065–1083

    Article  Google Scholar 

  • Zapata TR, Brissón I, Dzelalija F (1999) The role of the basement in the Andean fold and thrust belt of the Neuquén Basin, Argentina. In: Thrust Tectonics Conference. Royal Holloway, University of London, pp 122–124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vietor, T., Echtler, H. (2006). Episodic Neogene Southward Growth of the Andean Subduction Orogen between 30°S and 40°S — Plate Motions, Mantle Flow, Climate, and Upper-Plate Structure. In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_18

Download citation

Publish with us

Policies and ethics