Skip to main content

Atoms and Cavities: The Birth of a Schrödinger Cat of the Radiation Field

  • Chapter
International Trends in Optics and Photonics

Part of the book series: Springer Series in OPTICAL SCIENCES ((SSOS,volume 74))

Summary

Rydberg atoms in superconducting cavities make it possible to test fundamental features of quantum mechanics. The non-resonant interaction of a single atom with a mesoscopic coherent field results in a quantum superposition of two fields with different classical phases. This mesoscopic quantum superposition is similar to the famous “Schrödinger cat”, suspended between life and death. By probing the field state with a second atom, we monitor the relaxation of the field quantum superposition towards a statistical mixture. The “decoherence” time decreases rapidly with the “distance” between the two field components, being instantaneous for any macroscopic object. This experiment gives first direct evidence of the process which, at the heart of the quantum measurement, bans quantum superpositions from the macroscopic world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schrödinger, E. (1935) Naturwissenschaften, 23, 807, 823, 844; reprinted in english in [2]

    Google Scholar 

  2. Wheeler, J.A., Zurek, W.H. (1983) Quantum Theory of Measurement, Princeton University Press, Princeton, NJ

    Google Scholar 

  3. von Neumann, J. (1932) Mathematische Grundlagen der Quantenmechanik, Springer, Berlin; reprinted in English in [1]

    Google Scholar 

  4. Zurek, W.H. (1991) Phys. Today, 44, 36

    Article  Google Scholar 

  5. Zurek, W.H. (1981) Phys. Rev. D, 24, 1516

    Article  MathSciNet  ADS  Google Scholar 

  6. Zurek, W.H. (1981) Phys. Rev. D, 26, 1862 (1982);

    Article  MathSciNet  Google Scholar 

  7. Caldeira, A.O., Leggett, A.J. (1983) Physica A, 121, 587;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Joos, E., Zeh, H.D. (1985) Z. Phys. B, 59, 223;

    Article  ADS  Google Scholar 

  9. Omnès, R. (1994) The Interpretation of Quantum Mechanics, Princeton University Press, Princeton, NJ

    Google Scholar 

  10. Monroe, C. et al. (1996) Science, 272, 1131

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Brune, M. et al. (1996) Phys. Rev. Lett., 77, 4887

    Article  ADS  Google Scholar 

  12. Nussenzveig, P. et al. (1993) Phys. Rev. A, 48, 3991

    Google Scholar 

  13. Hulet, R.G., Kleppner, D. (1983) Phys. Rev. Lett., 51, 1430

    Article  ADS  Google Scholar 

  14. Ramsey, N.F. (1985) Molecular Beams, Oxford University Press, New York

    Google Scholar 

  15. Brune, M. et al. (1994) Phys. Rev. Lett., 72, 3339

    Article  ADS  Google Scholar 

  16. Brune, M. et al. (1996) Phys. Rev. Lett., 76, 1800

    Article  ADS  MATH  Google Scholar 

  17. Glauber, R.J. (1963) Phys. Rev., 131, 2766

    Article  MathSciNet  ADS  Google Scholar 

  18. Buzek, V., Knight, P.L. (1995) Progress in Optics, vol. XXXIV, E. Wolf ed., North-Holland, Amsterdam, p. 1 and refs. therein

    Google Scholar 

  19. The Birth of a Schrödinger Cat 53

    Google Scholar 

  20. Davidovich, L. et al. (1996) Phys. Rev. A, 53, 1295

    Article  ADS  Google Scholar 

  21. Scully, M.O. et al. (1991) Nature, 351, 111;

    Article  ADS  Google Scholar 

  22. Haroche, S. et al. (1992) Appl. Phys. B, 54, 355;

    Article  ADS  Google Scholar 

  23. Pfau, T. et al. (1994) Phys. Rev. Lett., 73, 1223;

    Article  ADS  Google Scholar 

  24. Chapman, M.S. et al. (1995) Phys. Rev. Lett., 75, 3783

    Article  ADS  Google Scholar 

  25. Maître, X. et al. (1997) J. Modern Optics, 44, 2023

    ADS  Google Scholar 

  26. Raimond, J.M. et al. (1997) Phys. Rev. Lett., 79, 1964

    Article  ADS  Google Scholar 

  27. Einstein, A., Podolsky, B., Rosen, N. (1935) Phys. Rev., 47, 777

    Article  ADS  MATH  Google Scholar 

  28. Hagley, E. et al. (1997) Phys. Rev. Lett., 79, 1

    Article  ADS  Google Scholar 

  29. Greenberger, D.M., Horne, M.A., Zeilinger, A. (1990) Am. J. Phys., 58, 1131

    Article  MathSciNet  ADS  Google Scholar 

  30. Haroche, S. (1995) Fundamental problems in quantum theory, D. Greenberger, Zeilinger, A. (Eds.), Ann. NY Acad. Sci., 755, 73

    Google Scholar 

  31. Davidovich, L. et al. (1993) Phys. Rev. Lett., 71, 2360

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raimond, JM., Haroche, S. (1999). Atoms and Cavities: The Birth of a Schrödinger Cat of the Radiation Field. In: Asakura, T. (eds) International Trends in Optics and Photonics. Springer Series in OPTICAL SCIENCES, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48886-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48886-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14212-7

  • Online ISBN: 978-3-540-48886-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics