Skip to main content

Part of the book series: Lecture Notes in Physics Monographs ((LNPMGR,volume 31))

Abstract

The representation of the observables of a physical system as self-adjoint operators on Hilbert space is traditionally motivated by making reference to the correspondence principle or by invoking some quantisation scheme, such as the transcription of the Lie algebra structure from phase space to Hilbert space. There exists an alternative approach which refers directly to the operationally relevant features of these observables. This relativistic approach has the advantage of being open to the consideration of unsharp observables, which turns out necessary in some cases where sharp ‘observables’ simply do not exist or are not amenable to measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter III.

  1. H. Weyl. The Theory of Groups and Quantum Mechanics. Dover Publications, Inc., New York, 1950. German original 1931.

    Google Scholar 

  2. E.P. Wigner. Unitary representations of the inhomogeneous Lorentz group. Annals of Mathematics 40, 149–204, 1939.

    Article  MathSciNet  Google Scholar 

  3. G.W. Mackey. The Theory of Unitary Group Representations in Physics, Probability, and Number Theory. Benjamin/Cummings, Reading, Massachusetts, 1978.

    Google Scholar 

  4. A.S. Wightman. On the localizability of quantum mechanical systems. Reviews of Modern Physics 34, 845–872, 1962.

    Article  ADS  MathSciNet  Google Scholar 

  5. J.-M. Lévy-Leblond. Galilei group and Galilean invariance. In: Group Theory and Its Applications. Ed. E.M. Loebl, Academic Press, New York, pp. 221–299, 1971.

    Google Scholar 

  6. B. Simon. Quantum dynamics: from automorphism to Hamiltonian. In: Studies in Mathematical Physics. Essays in Honor of Valentine Bargman. Eds. E.H. Lieb, B. Simon and A.S. Wightman, Princeton Series in Physics, Princeton University Press, pp. 327–349, 1976.

    Google Scholar 

  7. S.T. Ali. A geometrical property of POV-measures and systems of covariance. In: Differential Geometric Methods in Mathematical Physics. Eds. H.-D. Doebner, S.I. Anderson and H.R. Petri, Lecture Notes in Mathematics, Vol. 905, Springer-Verlag, Berlin, pp. 207–228, 1982.

    Google Scholar 

  8. S.T. Ali, E. Prugovečki. Systems of imprimitivity and representations of quantum mechanics in fuzzy phase spaces. Journal of Mathematical Physics 18, 219–228, 1977.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. E.B. Davies. On repeated measurements of continuous observables. Journal of Functional Analysis 6, 318–346, 1970.

    Article  Google Scholar 

  10. R. Werner. Screen observables in relativistic and nonrelativistic quantum mechanics. Journal of Mathematical Physics 27, 793–803, 1986.

    Article  ADS  MathSciNet  Google Scholar 

  11. Y. Aharonov, D. Bohm. Time in the quantum theory and the uncertainty relation for time and energy. Physical Review 122, 1649–1658, 1961.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. A. Peres. Measurement of time by quantum clocks. American Journal of Physics 48, 552–557, 1980.

    Article  ADS  MathSciNet  Google Scholar 

  13. E.P. Wigner. On the time-energy uncertainty relation. In: Aspects of Quantum Theory. Eds. A. Salam and E.P. Wigner, Cambridge University Press, Cambridge, pp. 237–247, 1972.

    Google Scholar 

  14. A. Barchielli. Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics. Quantum Optics 2, 423–441, 1990. V.P. Belavkin. A continuous counting observation and posterior quantum dynamics. Journal of Physics A 22, 1109–1114, 1989.

    Article  ADS  MathSciNet  Google Scholar 

  15. R.L. Hudson, K.R. Parthasarathy. Quantum Ito’s formula and stochastic evolutions. Communications in Mathematical Physics 93, 301–323, 1984.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. K.R. Parthasarathy. An Introduction to Quantum Stochastic Calculus. Monographs in Mathematics, Vol. 85, Birkhäuser Verlag, Basel, 1992.

    MATH  Google Scholar 

  17. W. Schleich, S.M. Barnett (Eds.). Quantum Phase and Phase Dependent Measurements. Special Issue, Physica Scripta T48, 1993.

    Google Scholar 

  18. R.G. Newton. Quantum action-variables for harmonic oscillators. Annals of Physics 124, 327–346, 1980.

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Galindo. Phase and number. Letters in Mathematical Physics 8, 495–500, 1984. J.C. Garrison and J. Wong. Canonically conjugate pairs, uncertainty relations, and phase operators. Journal of Mathematical Physics 11, 2242–2249, 1970.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. P. Carruthers and M.M. Nieto. Phase and angle variables in quantum mechanics. Reviews of Modem Physics 40, 411–440, 1968.

    Article  ADS  Google Scholar 

  21. D.T. Pegg, S.M. Barnett. Phase properties of the quantized single-mode electromagnetic field. Physical Review A 39, 1665–1675, 1989.

    Article  ADS  Google Scholar 

  22. S.M. Barnett and D.T. Pegg. Quantum theory of rotation angles. Physical Review A 41, 3427–3435, 1990.

    Article  ADS  MathSciNet  Google Scholar 

  23. V.N. Popov and V.S. Yarunin. Photon phase operator. Theoretical and Mathematical Physics 89, 1292–1297, 1992.

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Glauber. The quantum theory of optical coherence. Physical Review 130, 2529–2539, 1963. Coherent and incoherent states of the radiation field. Physical Review 131, 2766–2788, 1963.

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Grabowski. New observables in quantum optics and entropy. In: Symposium on the Foundations of Modern Physics 1993. Eds P. Busch, P. Lahti, and P. Mittelstaedt, World Scientific, pp 182–191.

    Google Scholar 

  26. P. Busch, M. Grabowski, P. Lahti. Who is afraid of POV measures? Unified approach to quantum phase observables. Annals of Physics 237, 1–11, 1995.

    Article  ADS  MathSciNet  Google Scholar 

  27. T.D. Newton, E.P. Wigner. Localized states for elementary systems. Reviews in Modern Physics 21, 400–406, 1949.

    Article  MATH  ADS  Google Scholar 

  28. K. Kraus. Position observable of the photon. In: The Uncertainty Principle and Foundations of Quantum Mechanics. Eds. W.C. Price and S.S. Chissick, John Wiley & Sons, New York, pp. 293–320, 1976. S.T. Ali, G.G. Emch. Fuzzy observables in quantum mechanics. Journal of Mathematical Physics 15, 176–182, 1974.

    Google Scholar 

  29. J.A. Brooke, F.E. Schroeck. Localization of the photon on phase space. Preprint, 1994.

    Google Scholar 

Further Reading

  • S.T. All Survey of quantization methods. In: Classical and Quantum Systems — Foundations and Symmetries. Eds. H.D. Doebner, W. Scherer, and F.E. Schroeck, Jr., World Scientific, Singapore, 1993.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(1995). Observables. In: Operational Quantum Physics. Lecture Notes in Physics Monographs, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49239-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49239-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59358-4

  • Online ISBN: 978-3-540-49239-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics