Skip to main content

How to determine long-term changes in marine climate

  • Chapter
Marine Climate and Climate Change

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

  • 2159 Accesses

Abstract

So far we have reviewed the dynamics of the global climate system, the marine weather phenomena this book is about—in particular, storms, wind waves, and storm surges—and how to mathematically describe these phenomena. In this chapter, we address the question on how to determine long-term changes in the statistics of marine weather phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandersson, H.; and A. Moberg (1997). Homogenization of Swedish temperature data, Part I: Homogeneity test for linear trends. Int. J. Climatol., 17, 25–34.

    Article  Google Scholar 

  • Alexandersson, H.; T. Schmith; K. Iden; and H. Tuomenvirta (1998). Long-term variations of the storm climate over NW Europe. Global Atmos. Oc. System, 6, 97–120.

    Google Scholar 

  • Alexandersson, H.; H. Tuomenvirta; T. Schmith; and K. Iden (2000). Trends of storms in NW Europe derived from an updated pressure data set. Climate Res., 14, 71–73.

    Article  Google Scholar 

  • Auer, I.; R. Boehm; A. Jurkovic; W. Lipa; A. Orlik; R. Potzmann; W. Schoener; M. Ungersboeck; C. Matulla; K. Briffa et al. (2005). HISTALP historical instrumental climatological surface time series of the greater alpine region. Int. J. Climatol., 17, 14–46.

    Google Scholar 

  • Bärring, L.; and K. Fortuniak (2009). Multi-indices analysis of southern Scandinavian storminess 1780–2005 and links to interdecadal variations in the NW Europe-North Sea region. Int. J. Climatol., 29, 373–384, doi: 10.1002/joc.1842.

    Article  Google Scholar 

  • Bärring, L.; and H. von Storch (2004). Scandinavian storminess since about 1800. Geophys. Res. Lett., 31, L20202, doi: 10.1029/2004GL020441.

    Article  Google Scholar 

  • Behringer, W. (2005). The global ocean data assimilation system (GODAS) at NCEP. In: Preprints, 11th Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans and Land Surface. American Meteorological Society. Available at http://ams.confex.com/ams/pdfpapers/119541.pdf

    Google Scholar 

  • Bell, M.; J. Martin; and N. Nichols (2004). Assimilation of data into an ocean model with systematic errors near the equator. Quart. J. Roy. Meteorol. Soc., 130, 853–871.

    Article  Google Scholar 

  • Bellucci, A.; S. Masina; P. Di Pietro; and A. Navarra (2007). Using temperature-salinity relations in a global ocean implementation of a multivariate dataassimilation scheme. Mon. Wea. Rev., 135, 3785–3807.

    Article  Google Scholar 

  • Bengtsson, L.; S. Hagemann; and K. Hodges (2004). Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, doi: 10.1029/2004JD004536.

    Google Scholar 

  • Bhend, J.; and H. von Storch (2007). Consistency of observed winter precipitation trends in northern Europe with regional climate change projections. Climate Dyn., 31, 17–28, doi: 10.1007/s00382-007-0335-9.

    Article  Google Scholar 

  • Bhend, J.; and H. von Storch (2009). Is greenhouse gas forcing a plausible explanation for the observed warming in the Baltic Sea catchment area? Boreal Environ Res., 14, 81–88.

    Google Scholar 

  • Black, D.; M. Abahazi; R. Thunell; A. Kaplan; E. Tappa; and L. Peterson (2007). An 8-century tropical Atlantic SST record from the Cariaco Basin: Baseline variability, 20th-century warming, and Atlantic hurricane frequency. Paleooceanography, 22, PA4204, doi: 10.1029/2007PA001427.

    Article  Google Scholar 

  • Bray, D.; C. Hagner; and I. Grossmann (2003). Grey, Green, Big Blue: Three Regional Development Scenarios Addressing the Future of Schleswig-Holstein, Technical Report 2003/25. GKSS Research Center, Geesthacht, Germany.

    Google Scholar 

  • Bromwich, D.; R. Fogt; K. Hodges; and J. Walsh (2007). Tropospheric assessment of ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res., D11111, doi: 10.1029/2006JD007859.

    Google Scholar 

  • Caires, S.; and A. Sterl (2005). 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. J. Climate, 18, 1032–1048.

    Article  Google Scholar 

  • Caires, S.; A. Sterl; and C. Gommenginger (2005). Global ocean mean wave period data: Validation and description. J. Geophys. Res., 110, C02003, doi: 10.1029/2004JC002631.

    Article  Google Scholar 

  • Carton, J.; and B. Giese (2008). A reanalysis of ocean climate using simple data assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017.

    Article  Google Scholar 

  • Carton, J.; and A. Santorelli (2008). Global decdal upper-ocean heat content as viewed in nine analyses. J. Climate, 21, 6015–6035, doi: 10.1175/2008JCLI2489.1.

    Article  Google Scholar 

  • Cieslikiewicz, W.; and B. Paplinska-Swerpel (2008). A 44-year hindcast of wind wave fields over the Baltic Sea. Coastal Eng., 894–905, doi: 10.1016/j.coastaleng.2008.02.017.

    Google Scholar 

  • Compo, G.; J. Whitaker; and P. Sardeshmukh (2006). Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteorol. Soc., 87, 175–190, doi: 10.1175/BAMS-87-2-175.

    Article  Google Scholar 

  • Cox, A.; and V. Swail (2001). A global wave hindcast over the period 1958–1997: Validation and climate assessment. J. Geophys. Res., 106, 2313–2329.

    Article  Google Scholar 

  • Davey, M. (2005). Enhanced Ocean Data Assimilation and Climate Prediction, Framework 5 Project Technical Report. European Commission.

    Google Scholar 

  • De Kraker, A. (1999). A method to assess the impact of high tides, storms and storm surges as vital elements in climate history: The case of stormy weather and dikes in the northern part of Flanders. Climatic Change, 43, 287–302, doi: 10.1023/A:1005598317787.

    Article  Google Scholar 

  • Dickinson, R.; R. Errico; F. Giorgi; and G. Bates (1989). A regional climate model for the western United States. Climatic Change, 15, 383–422, doi: 10.1007/BF00240465.

    Google Scholar 

  • Essen, J.; J. Klussmann; R. Herber; and I. Grevemeyer (1999). Does microseism in Hamburg (Germany) reflect the wave climate in the North Atlantic? D. Hydrogr. Z., 51, 17–29.

    Article  Google Scholar 

  • Feser, F. (2006). Enhanced detectability of added value in limited-area model results separated into different spatial scales. Mon. Wea. Rev., 134, 2180–2190.

    Article  Google Scholar 

  • Feser, F.; R. Weisse; and H. von Storch (2001). Multi-decadal atmospheric modeling for Europe yields multi-purpose data. EOS Trans., 82, 305, 310.

    Article  Google Scholar 

  • Flather, R.; J. Smith; J. Richards; C. Bell; and D. Blackman (1998). Direct estimates of extreme storm surge elevations from a 40-year numerical model simulation and from observations. Global Atmos. Oc. System, 6, 165–176.

    Google Scholar 

  • Garcia, R.; L. Gimeno; E. Hernández; R. Prieto; and P. Ribera (2000). Reconstructions of North Atlantic atmospheric circulation in the 16th, 17th and 18th centuries from historical sources. Climate Res., 14, 147–151.

    Article  Google Scholar 

  • Garcia-Sotillo, M.; A. Ratsimandresy; J. Carretero; A. Bentamy; F. Valero; and F. González-Rouco (2005). A high-resolution 44-year atmospheric hindcast for the Mediterranean Basin: Contribution to the regional improvement of global reanalysis. Climate Dyn., 219–236, doi: 10.1007/s00382-005-0030-7.

    Google Scholar 

  • Gibson, R.; P. KĂĄlberg; and S. Uppala (1996). The ECMWF re-analysis (ERA) project. ECMWF Newsl., 73, 7–17.

    Google Scholar 

  • Giorgi, F. (1990). Simulation of regional climate using a limited area model nested in a general circulation model. J. Climate, 3, 941–963.

    Article  Google Scholar 

  • Giorgi, F.; B. Hewitson; J. Christensen; M. Hulme; H. von Storch; P. Whetton; R. Jones; L. Mearns; C. Fu; R. Arrit et al. (2001). Regional climate information: Evaluation and projections. IPCC Climate Change 2001: The Scientific Basis. Cambridge University Press.

    Google Scholar 

  • Glickman, T. (Ed.) (2000). Glossary of Meteorology. American Meteorological Society, Boston, Second Edition.

    Google Scholar 

  • Gorman, R.; K. Bryan; and A. Laing (2003). Wave hindcast for the New Zealand region: Nearshore validation and coastal wave climate. N.Z. J. Marine Freshwater Res., 37, 567–588.

    Article  Google Scholar 

  • Grossmann, I.; K. Woth; and H. von Storch (2006). Localization of global climate change: Storm surge scenarios for Hamburg in 2030 and 2085. Die KĂĽste, 71, 169–182.

    Google Scholar 

  • GĂĽnther, H.; W. Rosenthal; M. Stawarz; J. Carretero; M. GĂłmez; I. Lozano; O. Serrano; and M. Reistad (1998). The wave climate of the Northeast Atlantic over the period 1955–1994: The WASA wave hindcast. Global Atmos. Oc. System, 6, 121–164.

    Google Scholar 

  • Hamed, K. (2009). Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. J. Hydrol., 368, 143–155, doi: 10.1016/j.jhydrol.2009.01.040.

    Article  Google Scholar 

  • Hasselmann, K. (1979). On the signal-to-noise problem in atmospheric response studies. In: B. Shaw (Ed.), Meteorology over the Tropical Oceans. Royal Meteorological Society, Bracknell, U.K., pp. 251–259.

    Google Scholar 

  • Hasselmann, K. (1993). Optimal fingerprints for the detection of time dependent climate change. J. Climate, 6, 1957–1972.

    Article  Google Scholar 

  • Hegerl, H.; H. von Storch; K. Hasselmann; B. Santer; U. Cubasch; and P. Jones (1996). Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. J. Climate, 9, 2281–2306.

    Article  Google Scholar 

  • Houghton, J.; Y. Ding; D. Griggs; M. Noguer; P. van der Linden; X. Dai; K. Maskell; and C. Johnson (Eds.) (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K. ISBN 0521 01495 6, 881 pp.

    Google Scholar 

  • IDAG (The International Ad Hoc Detection and Attribution Group) (2005). Detecting and attributing external influences on the climate system: A review of recent advances. J. Climate, 18, 1291–1314.

    Article  Google Scholar 

  • Ishii, M.; M. Kimoto; K. Sakamoto; and S. Iwasaki (2006). Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J. Oceanogr., 62, 155–170.

    Article  Google Scholar 

  • Jedrasik, J.; W. CieĹ›likiewicz; M. Kowalewski; K. Bradtke; and A. Jankowski (2008). 44-year hindcast of the sea level and circulation in the Baltic Sea. Coastal Eng., 849–860, doi: 10.1016/j.coastaleng.2008.02.026.

    Google Scholar 

  • Kalnay, E.; M. Kanamitsu; R. Kistler; W. Collins; D. Deaven; L. Gandin; M. Iredell; S. Saha; G. White; J. Woollen et al. (1996). The NCEP/NCAR reanalysis project. Bull. Amer. Meteorol. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kanamaru, H.; and M. Kanamitsu (2006). Scale selective bias correction in a downscaling of global analysis using a regional model. Mon. Wea. Rev., 135, 334–350.

    Article  Google Scholar 

  • Kanamaru, H.; and M. Kanamitsu (2007). 57-year California reanalysis downscaling at 10 km (CaRDIO), Part II: Comparison with North American regional reanalysis. J. Climate, 20, 5553–5571.

    Article  Google Scholar 

  • Kanamitsu, M.; and H. Kanamaru (2007). 57-year California reanalysis downscaling at 10 km (CaRDIO), Part I: System detail and validation with observations. J. Climate, 20, 5527–5552.

    Article  Google Scholar 

  • Kanamitsu, M.; W. Ebisuzaki; J. Woollen; S. Yang; J. Hnilo; M. Fiorino; and G. Potter (2002). NCEP/DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteorol. Soc., 83, 1631–1643.

    Article  Google Scholar 

  • Karl, T.; R. Quayle; and P. Groisman (1993). Detecting climate variations and change: New challenges for observing and data management systems. J. Climate, 6, 1481–1494.

    Article  Google Scholar 

  • Kellow, A. (2007). Science and Public Policy: The Virtuous Corruption of Virtual Environmental Science. Edward Elgar. ISBN 978-1847204707.

    Google Scholar 

  • Kendall, M. (1970). Rank Correlation Methods. Griffin, London, Fourth Edition, 258 pp.

    Google Scholar 

  • Kistler, R.; E. Kalnay; W. Collins; S. Saha; G. White; J. Woollen; M. Chelliah; W. Ebisuzaki; M. Kanamitsu; V. Kousky et al. (2001). The NCEP/NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteorol. Soc., 82, 247–267.

    Article  Google Scholar 

  • Köhl, A.; and D. Stammer (2008). Decadal sea level changes in the 50-year GECCO ocean synthesis. J. Climate, 21, 1876–1860.

    Article  Google Scholar 

  • Kulkarni, A.; and H. von Storch (1995). Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall test of trend. Meteorol. Z., 4, 82–85.

    Google Scholar 

  • Landsea, C. (2007). Counting Atlantic tropical cyclones back to 1900. EOS Trans., 88, 197–208, doi: 10.1029/2007EO180001.

    Article  Google Scholar 

  • Landsea, C.; C. Anderson; N. Charles; G. Clark; J. Dunion; J. Fernández-Patagás; P. Hungerford; C. Neumann; and M. Zimmer (2004). The Atlantic hurricane database reanalysis project: Documentation for 1851–1910 alterations and additions to the HURDAT data base. In: R. Murnane and K. Liu (Eds.), Hurricanes and Typhoons: Past, Present and Future. Columbia University Press, pp. 177–221.

    Google Scholar 

  • Langenberg, H.; A. Pfizenmayer; H. von Storch; and J. SĂĽndermann (1999). Storm-related sea level variations along the North Sea coast: Natural variability and anthropogenic change. Continental Shelf Res., 19, 821–842.

    Article  Google Scholar 

  • Levitus, S.; J. Antonov; and T. Boyer (2005). Warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, L02604, doi: 10.1029/2004GL021592.

    Article  Google Scholar 

  • Luterbacher, J.; E. Xoplaki; D. Dietrich; R. Rickli; J. Jacobeit; C. Beck; D. Gyalistras; C. Schmutz; and H. Wanner (2002). Reconstruction of sea level pressure fields over the eastern North Atlantic and Europe back to 1500. Climate Dyn., 18, 545–561.

    Google Scholar 

  • Mann, H. (1945). Nonparametric test against trends. Econometrica, 13, 245–259.

    Article  Google Scholar 

  • Matulla, C; and H. von Storch (2009). Changes in eastern Canadian storminess since 1880. J. Climate, submitted.

    Google Scholar 

  • Matulla, C; W. Schöner; H. Alexandersson; H. von Storch; and X. Wang (2008). European storminess: Late nineteenth century to present. Climate Dyn., 31, 1125–1130, doi: 10.1007/s00382-007-0333-y.

    Article  Google Scholar 

  • McGregor, H.; M. Dimma; H. Fischer; and S. Mulitza (2007). Rapid 20th-century increase in coastal upwelling off northwest Africa. Science, 315, 637–639.

    Article  Google Scholar 

  • Meier, H.; B. Broman; and E. Kjellström (2004). Simulated sea level in past and future climates of the Baltic Sea. Climate Res., 27, 59–75.

    Article  Google Scholar 

  • Mesinger, F.; G. DiMego; E. Kalnay; K. Mitchell; P. Shafran; W. Ebisuzaki; D. Jovic; J. Woollen; E. Rogers; E. Berbery et al. (2006). North American regional reanalysis. Bull. Amer. Meteorol. Soc., 87, 343–360, doi: 10.1175/BAMS-87-3-343.

    Article  Google Scholar 

  • Mitchell, J.; D. Karoly; G. Hegerl; F. Zwiers; A. Allen; J. Marengo; V. Baros; M. Berliner; G. Boer; T. Crowley et al. (2001). Detection of climate change and attribution of causes. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K., pp. 695–738. ISBN 0521 01495 6.

    Google Scholar 

  • Moberg, A.; and H. Alexandersson (1997). Homogenization of Swedish temperature data, Part II: Homogenized gridded air temperature compared with a subset of global gridded air temperature since 1861. Int. J. Climatol, 17, 35–54.

    Article  Google Scholar 

  • Musić, S.; and S. Nicković (2008). 44-year wave hindcast for the eastern Mediterranean. Coastal Eng., 872–880, doi: 10.1016/j.coastaleng.2008.02.024.

    Google Scholar 

  • Nakicenovic, N.; and R. Swart (Eds.), Special Report of the Intergovernmental Panel on Climate Change on Emission Scenarios. Cambridge University Press. Available at http://www.ipcc.ch/pub/reports/htm.

    Google Scholar 

  • Paciorek, C.; J. Risbey; V. Ventura; and R. Rosen (2002). Multiple indices of Northern Hemisphere cyclone activity, winters 1949–99. J. Climate, 15, 1573–1590.

    Article  Google Scholar 

  • Peterson, E.; and L. Hasse (1987). Did the Beaufort scale or the wind climate change? J. Phys. Oceanogr., 17, 1071–1074.

    Article  Google Scholar 

  • Ratsimandresy, A.; M. Sotillo; J. Carretero; E. Alvarez; and H. Hajji (2008). A 44-year high-resolution ocean and atmospheric hindcast for the Mediterranean basin developed within the HIPOCAS project. Coastal Eng., 827–842, doi: 10.1016/j.coastaleng.2008.02.025.

    Google Scholar 

  • Rybski, D.; A. Bunde; S. Havlin; and H. von Storch (2006). Long-term persistence in climate and the detection problem. Geophys. Res. Lett., 33, L06718, doi: 10.1029/2005GL025591.

    Article  Google Scholar 

  • Schmidt, H.; and H. von Storch (1993). German Bight storms analysed. Nature, 365, 791.

    Article  Google Scholar 

  • Shepherd, J.; and T. Knutson (2007). The current debate on the linkage between global warming and hurricanes. Geography Compass, 1, 1–24, doi: 10.1111/j.1749-8198. 2006.00002.x.

    Article  Google Scholar 

  • Smits, A.; A. K. Tank; and G. Können (2005). Trends in storminess over the Netherlands, 1962–2002. Int. J. Climatol, 25, 1331–1344, doi: 10.1002/joc.1195.

    Article  Google Scholar 

  • Solomon, S.; D. Qin; M. Manning; Z. Chen; M. Marquis; K. Averyt; M. Tignor; and H. Miller (Eds.) (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K., 996 pp. ISBN 978-0-521-88009-1.

    Google Scholar 

  • Sterl, A.; and S. Caires (2005). Climatology, variability and extrema of ocean waves: The web-based KNMI/ERA-40 wave atlas. Int. J. Climatol., 25, 963–977, doi: 10.1002/joc.1175.

    Article  Google Scholar 

  • Sterl, A.; G. Komen; and P. Cotton (1998). Fifteen years of global wave hindcasts using winds from the European Centre for Medium-range Weather Forecasts reanalysis: Validating the reanalyzed winds and assessing wave climate. J. Geophys. Res., 103, 5477–5492.

    Article  Google Scholar 

  • Stott, P. (2003). Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophys. Res. Lett., 30, doi: 10.1029/2003GL017324.

    Google Scholar 

  • Sun, C; M. Rienecker; A. Rosati; M. Harrison; A. Wittenberg; C. Keppenne; J. Jacob; and R. Kovach (2007). Comparison and sensitivity of ODASI ocean analysis in the tropical Pacific. Mon. Wea. Rev., 135, 2242–2264.

    Article  Google Scholar 

  • Tol, R. (2006). Exchange rates and climate change: An application of FUND. Climate Change, 75, 59–80.

    Article  Google Scholar 

  • Tol, R. (2007). Economic scenarios for global change. In: H. von Storch, R. Tol, and G. Flöser (Eds.), Environmental Crisis: Science and Policy. Springer-Verlag, pp. 17–36. ISBN 978-3-40-75895-2.

    Google Scholar 

  • Trenberth, K.; P. Jones; P. Ambenje; R. Bojariu; D. Easterling; A. K. Tank; D. Parker; F. Rahimzadeh; J. Renwick; M. Rusticucci et al. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K. ISBN 978-0-521-99009-1.

    Google Scholar 

  • Uppala, S.; P. Kallberg; A. Simmons; U. Andrae; V. da Costa Bechtold; M. Fiorino; J. Gibson; J. Haseler; A. Hernández; G. Kelly et al. (2005). The ERA-40 re-analysis. Quart. J. Roy. Meteorol. Soc., 131, 2961–3012.

    Article  Google Scholar 

  • von Storch, H. (2007). Climate change scenarios: Purpose and construction. In: H. von Storch, R. Tol, and G. Flöser (Eds.), Environmental Crisis: Science and Policy. Springer-Verlag, pp. 5–16. ISBN 978-3-540-75895-2.

    Google Scholar 

  • von Storch, H.; and H. Reichardt (1997). A scenario of storm surge statistics for the German Bight at the expected time of doubled atmospheic carbon dioxide concentration. J. Climate, 10, 2653–2662.

    Article  Google Scholar 

  • von Storch, H.; and R. Weisse (2008). Regional storm climate and related marine hazards in the northeast Atlantic. In: H. Diaz and R. J. Murnane (Eds.), Climate Extremes and Society. Cambridge University Press, pp. 54–73. ISBN 978-0-521-87028-3.

    Google Scholar 

  • von Storch, H.; and F. Zwiers (1999). Statistical Analysis in Climate Research. Cambridge University Press, New York, 494 pp.

    Google Scholar 

  • von Storch, H.; E. Zorita; and U. Cubasch (1991). Downscaling of Global Climate Change Estimates to Regional Scales: An Application to Iberian Rainfall in Wintertime, MPI Report 64. Max-Planck-Institut fĂĽr Meteorologie, Hamburg, Germany.

    Google Scholar 

  • von Storch, H.; H. Langenberg; and F. Feser (2000). A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664–3673.

    Article  Google Scholar 

  • Wang, X.; V. Swail; F. Zwiers; X. Zhang; and Y. Feng (2009). Detection of external influence on trends of atmospheric storminess and northern ocean wave heights. Climate Dyn., 32, 189–203, doi: 10.1007/s00382-008-0442-2.

    Article  Google Scholar 

  • WASA-Group (1998). Changing waves and storms in the northeast Atlantic? Bull. Amer. Meteorol. Soc., 79, 741–760.

    Article  Google Scholar 

  • Weisse, R.; and H. GĂĽnther (2007). Wave climate and long-term changes for the southern North Sea obtained from a high-resolution hindcast 1958–2002. Ocean Dynamics, 57, 161–172, doi: 10.1007/s10236-006-0094-x.

    Article  Google Scholar 

  • Weisse, R.; and A. Pluess (2006). Storm-related sea level variations along the North Sea coast as simulated by a high-resolution model 1958–2002. Ocean Dynamics, 56, 16–25, doi: 10.1007/s10236-005-0037-y, on line 2005.

    Article  Google Scholar 

  • Weisse, R.; H. von Storch; U. Callies; A. Chrastansky; F. Feser; I. Grabemann; H. GĂĽnther; A. Pluess; T. Stoye; J. Tellkamp et al. (2009). Regional meteorological-marine reanalyses and climate change projections: Results for Northern Europe and potentials for coastal and offshore applications. Bull. Amer. Meteorol. Soc., 90, 849–860, doi: 10.1175/2008BAMS2713.1.

    Article  Google Scholar 

  • Winterfeldt, J. (2008). Comparison of Measured and Simulated Wind Speed Data in the North Atlantic, GKSS Report 2008/2. GKSS Forschungszentrum, Geesthacht, Germany.

    Google Scholar 

  • Winterfeldt, J.; and R. Weisse (2009). Using QuickSCAT in the added value assessment of dynamically downscaled wind speed. Int. J. Climatol., submitted.

    Google Scholar 

  • Woodworth, P.; and D. Blackman (2002). Changes in extreme high waters at Liverpool since 1768. Int. J. Climatol., 22, 697–714.

    Article  Google Scholar 

  • Zorita, E.; and H. von Storch (1999). The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. J. Cimate, 12, 2474–2489.

    Article  Google Scholar 

  • Zwiers, F.; and H. von Storch (2004). On the role of statistics in climate research. Int. J. Climatol., 24, 665–680.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Weisse, R., von Storch, H. (2010). How to determine long-term changes in marine climate. In: Marine Climate and Climate Change. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68491-6_4

Download citation

Publish with us

Policies and ethics