Skip to main content

Impact of a Change of Support on the Assessment of Biodiversity with Shannon Entropy

  • Conference paper
Headway in Spatial Data Handling

Abstract

The research deals with the Modifiable Areal Unit Problem (MAUP). The MAUP is a common scale effect in geostatistics relating to how a studied territory is partitioned and to the ecological fallacy problem due to spatial data aggregation. We processed a biodiversity assessment using the Shannon index on a set of remote sensing data (SPOT 5) on the Ventoux Mount (Southern France). We applied the calculation on different geographical areas, with different sizes, shapes and spatial resolutions to test the effect of support change on the biodiversity measures. We proposed a method to aggregate the data at several imbricated scales so that the loss of biodiversity due to the spatial autocorrelation can be estimated separately from the MAUP. The concept of ‘pertinent’ scale is then discussed through two biodiversity criteria, a quantitative one (the Normalized Difference Vegetation Index, which evaluates the biomass quantity) and a qualitative one (a species typology, coming from a supervised classification of remote sensing data and experts maps).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amrhein, C., (1995), Searching for the elusive aggregation effect: evidence from statistical simulations, Environment and Planning A, 27, 105-119.

    Article  Google Scholar 

  • Atlan H., (2006), L’organisation biologique et la théorie de l’information, La librairie du XXIème siècle, Seuil:Paris.

    Google Scholar 

  • Baker W., (1997), The r.le Programs, A set of GRASS programs for the quantitative analysis of landscape structure. Version 2.2, University of Wyoming, USA. http://grass.itc.it/gdp/terrain/r_le_22.html

    Google Scholar 

  • Baldwin David J. B., Weaver Kevin, Schnekenburger Frank & Perera Ajith H., (2004), Sensitivity of landscape pattern indices to input data characteristics on real landscapes: implications for their use in natural disturbance emulation, Landscape Ecology, Vol. 19-3, 255-271.

    Google Scholar 

  • Clark W.A., Karen L., (1976), The effects of data aggregation in statistical analysis. Geographical Analysis, vol. VIII, 429-438.

    Google Scholar 

  • Cliff, A. D. & Ord J. K. (1973), Spatial autocorrelation, Pion:London.

    Google Scholar 

  • Cressie N., (1993), Statistics for spatial data, Wiley:NY.

    Google Scholar 

  • Dusek T., (2005), The Modifiable Areal Unit Problem in regional economics. The 45th Congress of the European Regional Science Association:Amsterdam.

    Google Scholar 

  • Frontier S., (1983), L’échantillonnage de la diversité spécifique. In Stratégie d’échantillonnage en écologie, Frontier et Masson (eds) Paris (Coll. D’Ecologie).

    Google Scholar 

  • Farina A., (2000), Landscape Ecology in action, Kluwer:London.

    Google Scholar 

  • Gehlke C.E., Biehl, K., (1934), Certain effects of grouping upon the size of the correlation coefficient in census tract material, Journal of the American Statistical Association, 169-170.

    Google Scholar 

  • Gotway Crawford C. A. and Young L. J. (2004), A spatial view of the ecological inference problem in Ecological Inference. New Methodological Strategies Series: Analytical Methods for Social Research, Gary King, Ori Rosen Martin, A. Tanner (Eds).

    Google Scholar 

  • Jelinski D.E., Wu J., (1996), The modifiable areal unit problem and implications for landscape ecology. Landscape Ecology, vol. 11-3, 129-140.

    Article  Google Scholar 

  • Lovett Gary M., Turner Monica G., Jones Clive G., Weathers Kathleen C. (eds), (2006) Ecosystem Function in Heterogeneous Landscapes, Springer.

    Google Scholar 

  • Marceau D.J., Howarth P.J., Gratton D.J., (1994) Remote sensing and the measurement of geographical entities in a forested environment; part 1, The scale and spatial aggregation problem, Remote Sensing of environment, vol. 49-2, 93-104.

    Article  Google Scholar 

  • Mahfoud I., Josselin D., Fady B., (2007) Sensibilité des indices de diversité à l’agrégation, in Informations géographiques. Structuration, extraction et utilisation, C. Weber & P. Gançarski (Eds). Revue Internationale de Géomatique, Hermès, Paris, vol. 17, 3-4, 293-308.

    Google Scholar 

  • Openshaw S., (1984), The modifiable areal unit problem. Concepts and Techniques in Modern Geography., Number 38, Geo Books:Norwich.

    Google Scholar 

  • Rastetter E.B., King A.W., Cosby B.J., Hornberger G.M., O’Neill R.V., Hobbie J.E., (1992), Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems. Ecological Applications 2, 55-70.

    Article  Google Scholar 

  • Reynolds, H. D., (1998), The modifiable areal unit problem: empirical analysis by statistical simulation, Thesis, University of Toronto.

    Google Scholar 

  • Robinson A.H., (1950), Ecological correlation and the behaviour of individuals. American Sociological Review, 15, 1-357.

    Google Scholar 

  • Tucker, C.J. (1979) Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 8-2, 127-150.

    Article  Google Scholar 

  • Wu J., Gao W., Tueller P.T., (1997), Effects of changing spatial scale on the results of statistical analysis with landscape data: A case study, Geographic Information Sciences 3, 30-41.

    Google Scholar 

  • Wu J., Levin S.A., (1994), A spatial patch dynamic modelling approach to pattern and process in annual grassland, Ecological Monographs, 64, 447-467.

    Article  Google Scholar 

  • Yule, G.U. and Kendall, M.G., (1950), An introduction to the theory of statistics, Griffin:London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Josselin, D., Mahfoud, I., Fady, B. (2008). Impact of a Change of Support on the Assessment of Biodiversity with Shannon Entropy. In: Ruas, A., Gold, C. (eds) Headway in Spatial Data Handling. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68566-1_7

Download citation

Publish with us

Policies and ethics