Skip to main content

Single Phase Flow

  • Chapter
Chemical Reactor Modeling

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson HI (1988) Introduction to Turbulence Modeling. Lecture Notes in Subject 76572 Turbulent Flow, Norwegian Institute of Technology, Trondheim

    Google Scholar 

  2. Anderson JD Jr (1995) Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill, Inc., New York

    Google Scholar 

  3. Aris R (1962) Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Dover, Inc., New York

    MATH  Google Scholar 

  4. Baerns M, Hofmann H, Renken A (1987) Chemische Reactionstechnik. Georg Thieme Verlag Stuttgart, New York

    Google Scholar 

  5. Baldyga J, Bourne JR (1999) Turbulent Mixing and Chemical Reactions. John Wiley & Sons, Chichester

    Google Scholar 

  6. Banerjee S, Chan AMC (1980) Separated Flow Models-I: Analysis of the Averaged and Local Instantaneous Formulations. Int J Multiphase Flow 6:1-24

    MATH  Google Scholar 

  7. Barrow GM (1979) Physical Chemistry. Fourth Edition, McGraw-Hill International book Company, Auckland

    Google Scholar 

  8. Batchelor GK (1982) The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  9. Bendiksen K, Malnes D, Moe R and Nuland S (1991) The dynamic two-fluid model OLGA: Theory and applications. SPE Production Engineers, pp. 171-180

    Google Scholar 

  10. Bird RB (1957) The equations of change and the macroscopic mass, momentum, and energy balances. Chem Eng Sci 6:123-181

    Google Scholar 

  11. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. John Wiley & Sons, New York

    Google Scholar 

  12. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Volume 1, Fluid mechanics. John Wiley & Sons, New York

    Google Scholar 

  13. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena. Second Edition, John Wiley & Sons, New York

    Google Scholar 

  14. Birkhoff G (1964) Averaged Conservation Laws in Pipes. Journal of Mathematical Analysis and Applications 8:66-77

    MATH  MathSciNet  Google Scholar 

  15. Biswas G, Eswaran V (2002) Turbulent Flows, Fundamentals, Experiments and Modeling. Aplha Science International Ltd., Pangbourne, England

    MATH  Google Scholar 

  16. Boris JP, Grinstein FF, Oran ES, Kolbe RL (1992) New insights into large eddy simulation. Fluid Dyn Res 10:199-228

    Google Scholar 

  17. Borisenko AI, Talapov IE (1979) Vectors and Tensor Analysis. Dover Publications Inc., New York

    Google Scholar 

  18. Boucher DF, Alves GE (1959) Dimensionless Numbers for Fluid Mechanics, Heat Transfer, Mass Transfer and Chemical Reaction. Chemical Engineering Progress 55(9):55-64

    Google Scholar 

  19. Boussinesq J (1877) Essai sur la thèorie des eaux courants. Mèm près par div savants à l’Acad Sci, Paris 23(1):1-680

    Google Scholar 

  20. Boussinesq J (1897) Thèorie de l’ècoulement tourbillonnant et tumultueeux des liquids dans les lits rectilignes à grande section I-II. Gauthier-Villars, Paris

    Google Scholar 

  21. Bove S (2005) Computational Fluid Dynamics of Gas-Liquid Flows including Bubble Population Balances. PhD Thesis, Aalborg University, Esbjerg

    Google Scholar 

  22. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux profile relationships in the atmospheric surface layer. J Atmos Sci 28:181-189

    Google Scholar 

  23. Chou PY (1945) On Velocity Correlations and the solutions of the equations of turbulent fluctuation. Quarterly of Applied Mathematics 3:38-54

    MATH  MathSciNet  Google Scholar 

  24. Corrsin S (1974) Limitations of Gradient Transport Models in Random Walks and in Turbulence. In: Landsberg HE, van Mieghem J (eds) Advances in geophysics, Academic Press, New York, 18A

    Google Scholar 

  25. Crowe CT, Sommerfeld M, Tsuji Y (1998) Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton.

    Google Scholar 

  26. Danckwerts PV (1953) Continuous flow systems: Distribution of Residence Times. Chem Eng Sci 2(1):1-18

    Google Scholar 

  27. Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech Part 2 41:453-480

    MATH  Google Scholar 

  28. Deardorff JW (1971) On the magnitude of the subgrid scale eddy coefficient. J Comput Phys 7(1):120-133

    MATH  Google Scholar 

  29. Deardorff JW (1972) Numerical Investigation of Neutral and Unstable Planetary Boundary Layers. Journal of the Atmospheric Science 29:91-115

    Google Scholar 

  30. Deardorff JW (1973) The Use of Subgrid Transport Equations in a Three-Dimensional Model of Atmospheric Turbulence. Journal of Fluids Engineering (Transactions of the ASME), pp. 429-438

    Google Scholar 

  31. Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18:495-527

    Google Scholar 

  32. de Groot SR, Mazur P (1962) Non-Equilibrium Thermodynamics. North-Holland, Amsterdam

    Google Scholar 

  33. Delhaye JM, Achard JL (1977) On the averaging operators introduced in two-phase flow. In: Banerjee S, Weaver JR (eds) Transient Two-phase Flow. Proc. CSNI Specialists Meeting, Toronto, 3.-4. august

    Google Scholar 

  34. Delhaye JM (1977) Instantaneous space-averaged equations. In: Kakac S, Mayinger F Two-Phase Flows and Heat Transfer. Vol. 1, pp. 81-90, Hemisphere, Washington, DC

    Google Scholar 

  35. Delhaye JM, Achard JL (1978) On the use of averaging operators in two phase flow modeling: Thermal and Aspects of Nuclear Reactor Safty, 1: Light Water Reactors. ASME Winter Meeting

    Google Scholar 

  36. Donea J, Giuliani S, Halleux JP (1982) An Arbitrary Lagrangian-Eulerian Finite Element Method for Transient Dynamic Fluid-Structure Interactions. Computer Methods in Applied Mechanics and Engineering 33:689-723

    MATH  Google Scholar 

  37. Donea J, Huerta A, Ponthot JP, Rodríguez-Ferran A (2004) Arbitrary Lagrangian-Eulerian Methods. Encyclopedia of Computational Mechanics. Stein E, de Borst R, Hughes JR (eds), Volume 1: Fundamentals. John Wiley & Sons, Ltd (ISBN:0-470-84699-2)

    Google Scholar 

  38. Drazin PG, Reid WH (1981) Hydrodynamic Stability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  39. Drew DA (1983) Mathematical Modeling of Two-Phase Flow. Ann Rev Fluid Mech 15:261-291

    Google Scholar 

  40. Dryden HL (1943) A review of the statistical theory of turbulence. Quart Appl Math 1:7-42

    MATH  MathSciNet  Google Scholar 

  41. Dyer AJ (1974) A review of flux-profile relations. Bound Layer Meteor 1:363-372

    Google Scholar 

  42. Elliott JR, Lira CT (1999) Introductory Chemical Engineering Thermodynamics. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  43. Enwald H, Peirano E, Almstedt AE (1996) Eulerian Two-Phase Flow Theory Applied to Fluidization. Int J Multiphase Flow 22:21-66, Suppl.

    MATH  Google Scholar 

  44. Erlebacher G, Hussaini MY, Speziale CG, Zang TA (1992) Towards the Large-Eddy Simulation of Compressible Turbulent Flows. J Fluid Mech 238:155-185

    MATH  Google Scholar 

  45. Ferziger JH (1977) Large Eddy Numerical Simulation of Turbulent Flows. AIAA J 15(9):1261-1267

    MATH  Google Scholar 

  46. Ferziger JH, Leslie DC (1979) Large Eddy Simulation: A Predictive Approach to Turbulent Flow Computation. American Institute of Aeronautics and Astronautics, Inc., paper A79-45272

    Google Scholar 

  47. Fogler H Scott (1992) Elements of Chemical Reaction Engineering. Second Edition, Prentice-Hall International, Inc., New Jersey

    Google Scholar 

  48. Fogler H Scott (2006) Elements of Chemical Reaction Engineering. Fourth Edition, Prentice-Hall International, Inc., New Jersey

    Google Scholar 

  49. Fox RO (1996) Computational Methods for Turbulent Reacting Flows in the Chemical Process Industry. Revue De L’Institut Francais Du Petrole 51(2):215-243

    Google Scholar 

  50. Fox RO (2003) Computational Models for Turbulent Reacting Flows. Cambridge University Press, Cambridge

    Google Scholar 

  51. Friedlander SK, Topper L (1961) Turbulence: Classic papers on statistical theory. Friedlander SK, Topper L (eds), Interscience Publishers, Inc., New York

    Google Scholar 

  52. Froment GF, Bischoff KB (1990) Chemical Reactor Analysis and Design. John Wiley and Sons, New York

    Google Scholar 

  53. Galperin B, Orszag SA (1993) Large Eddy Simulation of Complex Engineering and Geophysical Flows. Cambridge University Press, Cambridge

    Google Scholar 

  54. Gaskell DR (2003) Introduction to the Thermodynamics of Materials. Fourth Edition, Taylor & Francis, New York

    Google Scholar 

  55. Geankoplis CJ (1993) Transport Processes and Unit Operations. Third edition, PTR Prentice Hall International Editions, Englewood Cliffs

    Google Scholar 

  56. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A3:1760-1765

    Google Scholar 

  57. Germano M (1992) Turbulence: The filtering approach. J Fluid Mech 238:325-336

    MATH  MathSciNet  Google Scholar 

  58. Gidaspow D (1994) Multiphase Flow and Fluidization-Continuum and Kinetic Theory Descriptions. Academic Press, Harcourt Brace & Company, Publishers, Boston

    MATH  Google Scholar 

  59. Gosman AD, Pun WM, Runchal AK, Spalding DB, Wolfshtein M (1969) Heat and Mass Transfer in Recirculating Flows. Academic Press, London and New York

    Google Scholar 

  60. Gosman AD, Launder BE, Reece GJ (1985) Computer-Aided Engineering Heat Transfer and Fluid Flow. John Wiley & Sons, New York

    Google Scholar 

  61. Hanjalic K, Launder BE (1972) A Reynolds Stress Model of Turbulence and its Application to Thin Shear Flows. J Fluid Mech Part 4 52:609-638

    MATH  Google Scholar 

  62. Harlow FH, Nakayama I (1967) Turbulence Transport Equations. The Physics of Fluids 10(11):2323-2332

    MATH  Google Scholar 

  63. Harlow FH, Nakayama I (1968) Transport of Turbulence Energy Decay Rate. Los Alamos National Laboratory Report, LA-3854

    Google Scholar 

  64. Hayes RE (2001) Introduction to Chemical Reactor Analysis. Gordon and Breach Science Publishers, Australia

    Google Scholar 

  65. Herring JR (1979) Subgrid Scale Modeling - An Introduction and Overview. Turb Shear Flows 1:347-352

    Google Scholar 

  66. Hinze JO (1975) Turbulence. Second Edition, McGraw-Hill, New York

    Google Scholar 

  67. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular Theory of Gases and Liquids. John Wiley & Sons, Inc., New York

    MATH  Google Scholar 

  68. Hirt CW, Amsden AA, Cook JL (1974) An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds. J Comput Phys 14:227-253

    Google Scholar 

  69. Hoff KA, Poplsteinova J, Jakobsen HA, Falk-Pedersen O, Juliussen O, Svendsen HF (2003) Modeling of Membrane Reactor. International Journal of Chemical Reactor Engineering 1:1-12, Article A9, (http://www.bepress.com/ijcre/vol1/articles.html)

    Google Scholar 

  70. Hussain AKMF (1983) Coherent Structures - reality and myth. Physics of Fluids 26:2816-2850

    MATH  Google Scholar 

  71. Hussain AKMF (1986) Coherent Structures and Turbulence. J Fluid Mech 173:303-356

    Google Scholar 

  72. Incropera FP, DeWitt DP (2002) Fundamentals of Heat and Mass Transfer. Fifth Edition, John Wiley & Son, New York

    Google Scholar 

  73. Ishii M (1975) Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris

    MATH  Google Scholar 

  74. Ishii M, Mishima K (1984) Two-Fluid Model and hydrodynamic Constitutive Equations. Nuclear Engineering and Design 82:107-126

    Google Scholar 

  75. Jakobsen HA, Berge E, Iversen T, Skaalin R (1995) Status of the development of the multi-layer Eulerian model. a) Model description. b) A new method for calculating mixing heights. c) Model results for sulphur transport in Europe for 1992 in the 50 km grid. EMEP/MSC-W Note No. 3/95. Research Report No. 21, The Norwegian Meteorological Institute (DNMI), Oslo, Norway

    Google Scholar 

  76. Jakobsen HA (2001) Phase Distribution Phenomena in Two-Phase Bubble Column Reactors. Chem Eng Sci 56(3):1049-1056

    MathSciNet  Google Scholar 

  77. Jakobsen HA, Lindborg H, Handeland V (2002) A numerical study of the interactions between viscous flow, transport and kinetics in fixed bed reactors. Computers and Chemical Engineering 26:333-357

    Google Scholar 

  78. Jones WP, Launder BE (1972) The Prediction of Laminarization with a Two-Equation Model of Turbulence. Int J Heat Mass Transfer 15:301-314

    Google Scholar 

  79. Jones WP (1980) Models for Turbulent Flows with Variable Density and Combustion. In: Kollman W (ed) Prediction Methods for Turbulent Flow, Hemisphere Publishing Company

    Google Scholar 

  80. Keller LV, Friedman AA (1924) Differentialgleichung für die turbulente Bewegung einer kompressiblen Flüssigkeit’’. Proc 1st Intern Congr Appl Mech Delft, pp. 395-405

    Google Scholar 

  81. Kjelstrup S, Bedeaux D (2001) Elements of irreversible thermodynamics for engineers. International Centre for Applied Thermodynamics, (ISBN: 975-97568-1-1), Istanbul

    Google Scholar 

  82. Kolev NI (2002) Multiphase Flow Dynamics 1, Fundamentals. Springer, Berlin

    MATH  Google Scholar 

  83. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30(4):299-303 (in Russian)

    Google Scholar 

  84. Kolmogorov AN (1941) Energy dissipation in locally isotropic turbulence. Doklady AN SSSR 32(1):19-21

    Google Scholar 

  85. Kolmogorov AN (1942) The equation of turbulent motion in an incompressible fluid. Izvestia Acad Sci USSR Phys 6:56-58

    Google Scholar 

  86. Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13(1):82-85

    MATH  MathSciNet  Google Scholar 

  87. Kuiken GDC (1995a) Thermodynamics of Irreversible Processes. Applications to Diffusion and Rheology. John Wiley & Sons, Chichester

    Google Scholar 

  88. Kuiken GDC (1995) The Symmety of the Stress Tensor. Ind Eng Chem Res 34:3568-3572

    Google Scholar 

  89. Kuo KK (1986) Principles of Combustion. John Wiley & Sons, New York

    Google Scholar 

  90. Kyle BG (1999) Chemical and Physical Process Thermodynamics. Third Edition, Prentice Hall PTR, New Jersey

    Google Scholar 

  91. Lahey RT Jr, Drew DA (1989) The Three-Dimensional Time-and Volume Averaged Conservation Equations of Two -Phase Flow. Advances in Nuclear Science and Technology 20:1-69

    Google Scholar 

  92. Landau LD, Lifschitz EM (1963) Fluid Mechanics. Pergamon Press, London

    MATH  Google Scholar 

  93. Langlois WE (1964) Slow Viscous Flow. Macmillan, New York

    Google Scholar 

  94. Launder BE, Spalding DB (1972) Mathematical Models of Turbulence. Academic Press, London

    MATH  Google Scholar 

  95. Launder BE, Spalding DB (1974) The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, No. 3, pp. 269-289

    Google Scholar 

  96. Launder BE, Sharma BI (1974) Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Transf 1:131-138

    Google Scholar 

  97. Leonard A (1974) Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows. Adv Geophys 18A:237-248

    Google Scholar 

  98. Lesieur M (1993) Advance and State of the Art on Large-Eddy Simulations. 5th Int Symp on Refined Flow Modeling and Turbulence Measurements, Sep. 7-10, Paris

    Google Scholar 

  99. Leslie DC (1982) Simulation Methods for Turbulent Flows. In: Morton KW, Baines MJ (eds) Numerical Methods for Fluid Dynamics, Academic Press, London

    Google Scholar 

  100. Libby PA, Bray KNC (1981) Countergradient diffusion in pre-mixed flames. AIAA J 19:205-213

    Google Scholar 

  101. Lilly DK (1967) The representation of small-scale turbulence in numerical experiments. In: Proc IBM Scientific Computing Symposium on Environmental Sciences, IBM, White Plaines, New York

    Google Scholar 

  102. Lydersen AL (1979) Fluid Flow and Heat Transfer. John Wiley & Sons, Chichester

    Google Scholar 

  103. Løvland J (2002) Applied Chemical Thermodynamics. Compendium in subject SIK 3035, Part II, Department of Chemical Engineering, The Norwegian University of Science and Technology

    Google Scholar 

  104. Malvern LE (1969) Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  105. Mason PJ (1989) Large-Eddy Simulation of the Convective Atmospheric Boundary Layer. J Atm Sci 46(11):1492-1516

    Google Scholar 

  106. McComb WD (1990) The Physics of Fluid Turbulence. Clarendon Press, Oxford

    Google Scholar 

  107. Miller CA, Neogi P (1985) Interfacial Phenomena: Equilibrium and Dynamic Effects. Marcel Dekker, Inc., New York and Basel

    Google Scholar 

  108. Millikan CB (1938) A critical discussion of turbulent flows in channels and circular tubes. In: Den Hartog JP, Peters H (eds) Proc 5th Int Congr Applied Mechanics, New York, pp. 386-392, Wiley, New York

    Google Scholar 

  109. Moeng CH (1984) A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence. J Atm Sci 41(13):2052-2062

    Google Scholar 

  110. Moin P, Kim J (1982) Numerical investigation of turbulent channel flow. J Fluid Mech 118:341-377

    MATH  Google Scholar 

  111. Moin P, Squires K, Cabot W, Lee S (1991) A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids A3(11):2746-2757

    Google Scholar 

  112. Monin AS, Yaglom AM (1971) Statistical Fluid Mechanics: Mechanics of Turbulence. Volume 1. English edition updated, augmented and revised by the authors. Edited by John L. Lumley. The MIT Press, Cambridge

    Google Scholar 

  113. Monin AS, Yaglom AM (1975) Statistical Fluid Mechanics: Mechanics of Turbulence. Volume 2. English edition updated, augmented and revised by the authors. Edited by John L. Lumley. The MIT Press, Cambridge

    Google Scholar 

  114. Munson BR, Young DF, Okiishi TH (2002) Fundamentals of Fluid Mechanics. Fourth Edition, John Wiley & Sons, Inc., New York

    Google Scholar 

  115. Najm HN, Wychoff PS, Knio OM (1998) A semi-implicit numerical scheme for reacting flows I: Stiff chemistry. J Comput Phys 143:381-402

    MATH  MathSciNet  Google Scholar 

  116. Oboukhov AM (1949) Structure of the temperature field in a turbulent flow. Izv Akad Nauk SSSR Ser Geogr i Geofiz 13(1):58-69

    Google Scholar 

  117. Obukhov AM (1949) Pressure fluctuations in a turbulent flow. Dokl Akad Nauk SSSR 66(1):17-20

    MathSciNet  Google Scholar 

  118. Obukhov AM (1962) Some specific features of atmospheric turbulence. J Fluid Mech 13(1):77-81

    MathSciNet  Google Scholar 

  119. Panton RL (1996) Incompressible Flow. Second Edition, John Wiley & Sons, Inc., New York

    Google Scholar 

  120. Petersen AC, Beets C, van Hop H, Duynkerke PG, Siebesma AP (1999) Mass-Flux Characteristics of Reactive Scalars in the Convective Boundary Layer. J Atm Science 56:37-56

    Google Scholar 

  121. Pope S (2000) Turbulent Flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  122. Prandtl L (1904) Über Flüssigkeitsbewegungen bei sehr kleiner Reibung. Verhandlg III Intern Math Kongr Heidelberg, pp. 484-491

    Google Scholar 

  123. Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z Angew Math Mech (ZAMM) 5:136-139

    MATH  Google Scholar 

  124. Prandtl L (1945) Über ein neues Formelsustem für die augebildete Turbulentz. Nachr Akad Wiss Göttingen Math-Phys K1:6-19

    MathSciNet  Google Scholar 

  125. Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1999) Molecular Thermodynamics of Fluid-Phase Equilibria. Third Edition, Pretence Hall PTR, New Jersey

    Google Scholar 

  126. Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channela. Philos Trans Roy Soc London A174:935-982

    Google Scholar 

  127. Reynolds O (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos Trans Roy Soc London A186:123-164

    Google Scholar 

  128. Reynolds WC (1990) The Potential and Limitations of Direct and Large Eddy Simulations. In: Lumley JL (ed) Turbulence at the crossroads, Springer-Verlag, New York, pp. 313-343

    Google Scholar 

  129. Richardson LF (1922) Weather Prediction by Numerical Process. Cambridge University Press, Cambridge. An unabridged and unaltered republication of the work first published by Cambridge University Press, London in 1922 was later republished by ’Dover Publication, Inc.’ in 1965.

    MATH  Google Scholar 

  130. Richtmyer RD, Morton KW (1957) Difference Methods for Initial-Value Problems. Second Edition, Interscience Publishers (John Wiley & Sons), New York

    MATH  Google Scholar 

  131. Rodi W (1981) Turbulence Models and their Applications in Hydraulics. IAHR/AIHR Monograph

    Google Scholar 

  132. Rodi W (1984) Turbulence Models and Their Application in Hydraulics - A State of the Art Review. Presented at the IAHR-Section on Fundamentals of Division II: Experimental and Mathematical Fluid Dynamics

    Google Scholar 

  133. Rogallo RS, Moin P (1984) Numerical Simulation of Turbulent Flows. Ann Rev Fluid Mech 16:99-137

    Google Scholar 

  134. Rosner DE (1986) Transport Processes in Chemically Reacting Flow Systems. Butterworths, Boston

    Google Scholar 

  135. Rouse H, Ince S (1957) History of Hydaulics. Iowa Institute of Hydraulic Research, State Univerity of Iowa. Lithoprinted by Edwards Brothers Inc, Ann Arbor, Michigan, USA. Library of Congress Catalog Card Number 57-13474

    Google Scholar 

  136. Sabersky RH, Acosta AJ, Hauptmann EG, Gates EM (1999) Fluid Flow: A First Course in Fluid Mechanics. Fourth Edition, Prentice Hall, New Jersey

    Google Scholar 

  137. Sagaut P (1998) Large Eddy Simulation for Incompressible Flows: An Introduction. Springer, Berlin

    Google Scholar 

  138. Sandler SI (1999) Chemical and Engineering Thermodynamics. Third Edition, John Wiley & Sons, Inc., New York

    Google Scholar 

  139. Schlichting H, Gersten K (2000) Boundary-Layer Theory. Springer-Verlag, Berlin

    MATH  Google Scholar 

  140. Schumann U (1975) Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli. J Comput Phys 18:376-404

    MATH  MathSciNet  Google Scholar 

  141. Schumann U, Grötzbach G, Kleiser L (1980) Direct numerical simulation of turbulence. In; Kollmann W (ed) Prediction Methods for Turbulent Flows, Hemisphere, pp. 123-158

    Google Scholar 

  142. Schumann U (1989) Large-Eddy Simulation of the Turbulent Diffusion with Chemical Reactions in the Convective Boundary Layer. Atmospheric Environment 23(8):1713-1727

    Google Scholar 

  143. Schumann U (1992) Simulations and Parameterizations of Large Eddies in Convective Atmospheric Boundary Layers. In: Proceedings of a workshop held at the European Centre for Medium-Range Weather Forecasts (ECMWF) on Fine Scale Modelling and the Development of Parameterization Schemes, 16-18 September 1991, ECMWF.

    Google Scholar 

  144. Shames IH (1962) Mechanics of fluids. McGraw-Hill, New York

    Google Scholar 

  145. Shavit A, Gutfinger C (1995) Thermodynamics - From Concepts to Applications. Pretice Hall, London

    Google Scholar 

  146. Sideman S, Pinczewski W (1975) Turbulent Heat and Mass Transfer at Interfaces: Transport Models and Mechanisms. In: Gutfinger C (ed) Topics in Transport Phenomena: bioprocesses, mathematical treatment, mechanisms. Hemisphere, Washington

    Google Scholar 

  147. Slattery JC (1972) Momentum, Energy, and Mass Transfer in Continua. Second Edition, McGraw-Hill Kogakusha, LTD, Tokyo

    Google Scholar 

  148. Slattery JC (1990) Interfacial Transport Phenomena. Springer-Verlag, New York

    Google Scholar 

  149. Slattery JC (1999) Advanced Transport Phenomena. Cambridge University Press, New York

    MATH  Google Scholar 

  150. Smagorinsky J (1963) General Circulation Experiments with the Primitive Equations. Monthly Weather Review 91(3):99-164

    Google Scholar 

  151. Smith JM (1981) Chemical Engineering Kinetics. Third Edition, McGraw-Hill International Book Company, Auckland

    Google Scholar 

  152. Soo SL (1989) Particles and Continuum: Multiphase Fluid Dynamics. Hemisphere Publishing Corporation, New York

    Google Scholar 

  153. Spalding DB (1971) Concentration fluctuations in a round turbulent free jet. Chem Eng Sci 26:95-107

    MathSciNet  Google Scholar 

  154. Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  155. Tabor M (1989) Chaos and Integrability in Nonlinear Dynamics. John Wiley & Sons, New York

    MATH  Google Scholar 

  156. Tayebi D, Svendsen HF, Jakobsen HA, Grislingås A (2001) Measurement Techniques and Data Interpretations for Validating CFD Multiphase Reactor Models. Chem Eng Comm 186:57-159

    Google Scholar 

  157. Taylor GI (1915) Eddy motion in the atmosphere. Phil Trans Roy Soc A215:1-26

    Google Scholar 

  158. Taylor GI (1921) Diffusion by continuous movements. Proc London Math Soc, Serie 2, 20:196-211

    Google Scholar 

  159. Taylor GI (1935) Statistical Theory of Turbulence, I-III. Proc Roy Soc London A151(874):421-464

    Google Scholar 

  160. Taylor GI (1935) Statistical Theory of Turbulence, IV. Diffusion in a turbulent air stream. Proc Roy Soc London A151(874):465-478

    Google Scholar 

  161. Taylor GI (1935) Distribution of velocity and temperature between concentric rotating cylindres. Proc Roy Soc London A151(874):494-512

    Google Scholar 

  162. Taylor GI (1936) Statistical Theory of Turbulence. V. Effect of turbulence on boundary layer. Proc Roy Soc London A156(888):307-317

    Google Scholar 

  163. Taylor GI (1937) The Statistical Theory of Isotropic Turbulence. Journal of the Aeronautical Sciences 4(8):311-315

    Google Scholar 

  164. Taylor GI (1938) The Spectrum of Turbulence. Proc. Roy. Soc. London Series A 164:476-490

    Google Scholar 

  165. Taylor GI (1970) Some early ideas about turbulence. Boeing Symposium on Turbulence, J Fluid Mech 41:1-11

    Google Scholar 

  166. Taylor R, Krishna R (1993) Multicomponent Mass Transfer. John Wiley & Sons, New York

    Google Scholar 

  167. Tennekes H, Lumley JL (1972) A First Course in Turbulence. The MIT Press, Cambridge

    Google Scholar 

  168. Thompson PA (1972) Compressible-fluid dynamics. McGraw-Hill, Inc. New York

    MATH  Google Scholar 

  169. Toong TY (1983) Combustion Dynamics: The Dynamics of Chemically Reacting Fluids. McGraw-Hill Book Company, New York

    Google Scholar 

  170. Truesdell C, Toupin R (1960) The Classical Field Theories. In: Handbuch der Physik, Vol. III, Pt. 1, Springer-Verlag, Berlin

    Google Scholar 

  171. Unverdi SO, Tryggvason G (1992) A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows. J Comput Phys 100:25-37.

    MATH  Google Scholar 

  172. Unverdi SO, Tryggvason G (1992) Computations of multi-fluid flows. Physica D60:70-83, North-Holland

    Google Scholar 

  173. van der Hoven I (1957) Power Spectrum of Horizontal Wind Speed in the Frequency Range From 0.0007 to 900 Cycles per Hour. Journal of Meteorology 14:160-164

    Google Scholar 

  174. van Driest ER (1956) On turbulent flow near a wall. J Aero Sci 23:1007

    Google Scholar 

  175. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: The finite volume method. Addison Wesely Longman Limited, Malaysia

    Google Scholar 

  176. Voke PR, Collins MW (1983) Large-Eddy Simulation: Retrospect and Prospect. PhysicoChemical Hydrodynamics (PCH) 4(2):119-161

    Google Scholar 

  177. von Kàrmàn T (1930) Mechanische Ähnlichkeit und Turbulentz. Proc Third Int Congr Applied Mechanics, Stokholm, pp. 85-105

    Google Scholar 

  178. von Kàrmàn T (1937) The fundamentals of the statistical theory of turbulence. J Aeronaut Sci 4(4):131-138

    Google Scholar 

  179. von Kàrmàn T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc Roy Soc A164(917):192-215

    Google Scholar 

  180. Wallis GB (1969) One-dimensional Two-phase Flow. McGraw-Hill Book Company, New York

    Google Scholar 

  181. Welty JR, Wicks CE, Wilson RE, Rorrer G (2001) Fundamentals of Momentum, Heat, and Mass Transfer. 4th Edition, John Wiley & Sons, Inc., New York

    Google Scholar 

  182. Whitaker S (1968) Introduction to Fluid Mechanics. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  183. Whitaker S (1985) A Simple Geometrical Derivation of the Spatial Averaging Theorem. Chemical Engineering Education, pp. 18-21 and pp. 50-52

    Google Scholar 

  184. White FM (1974) Viscous Fluid Flow. McGraw-Hill, New York

    MATH  Google Scholar 

  185. White FM (1999) Fluid Mechanics. Fourth Edition, McGraw-Hill, Inc., New York

    Google Scholar 

  186. Wilcox DC (1993) Turbulence modeling for CFD. DCW Canada, California

    Google Scholar 

  187. Zumdahl SS (1992) Chemical Principles. D. C. Heath and Company, Lexington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jakobsen, H.A. (2009). Single Phase Flow. In: Chemical Reactor Modeling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68622-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68622-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25197-2

  • Online ISBN: 978-3-540-68622-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics