Skip to main content

Robust Aircraft Conceptual Design Using Automatic Differentiation in Matlab

  • Conference paper
Advances in Automatic Differentiation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 64))

Summary

The need for robust optimisation in aircraft conceptual design, for which the design parameters are assumed stochastic, is introduced. We highlight two approaches, first-order method of moments and Sigma-Point reduced quadrature, to estimate the mean and variance of the design’s outputs. The method of moments requires the design model’s differentiation and here, since the model is implemented in Matlab, is performed using the automatic differentiation (AD) tool MAD. Gradient-based constrained optimisation of the stochastic model is shown to be more efficient using AD-obtained gradients than finite-differencing. A post-optimality analysis, performed using AD-enabled third-order method of moments and Monte-Carlo analysis, confirms the attractiveness of the Sigma-Point technique for uncertainty propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barthelemy, J.F., Hall, L.E.: Automatic Differentiation as a Tool in Engineering Desing. TM 107661, NASA (1992)

    Google Scholar 

  2. Bischof, C.H., Griewank, A.: Computational Differentiation and Multidisciplinary Design. In: H. Engl, J. McLaughlin (eds.) Inverse Problems and Optimal Design in Industry, pp. 187–211. Teubner Verlag, Stuttgart (1994)

    Google Scholar 

  3. Chen, W., Allen, J.: A procedure for robust design: Minimizing variations caused by noise factors and control factors. Journal of Mechanical Design 118(4), 478–493 (1996)

    Article  Google Scholar 

  4. Du, X., Chen, W.: Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design. AIAA Journal 40(3), 545–552 (2002)

    Article  Google Scholar 

  5. Forth, S.A.: An efficient overloaded implementation of forward mode automatic differentiation in MATLAB. ACM Trans. Math. Softw. 32(2), 195–222 (2006). DOI: http://doi.acm.org/10.1145/1141885.1141888

  6. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. No. 19 in Frontiers in Applied Mathematics. SIAM, Philadelphia, PA (2000)

    MATH  Google Scholar 

  7. Helton, J.C., Davis, F.J.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Eng. System Safety 81(1), 23–69 (2003)

    Article  Google Scholar 

  8. Huang, B., Du, X.: Uncertainty analysis by dimension reduction integration and saddlepoint approximations. Transactions of the ASME 18, 26–33 (2006)

    Article  Google Scholar 

  9. Lewis, L., Parkinson, A.: Robust optimal design using a second order tolerance model. Research in Engineering Design 6(1), 25–37 (1994)

    Article  Google Scholar 

  10. The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098: MATLAB Optimization Toolbox 3 - User’s guide (2007)

    Google Scholar 

  11. Padulo, M., Campobasso, M.S., Guenov, M.D.: Comparative Analysis of Uncertainty Propagation methods for Robust Engineering Design. In: International Conference on Engineering Design ICED07. Paris (2007)

    Google Scholar 

  12. Park, G.J., Lee, T.H., Lee, K.H., Hwang, K.H.: Robust Design: An Overview. AIAA Journal 44(1), 181–191 (2006)

    Article  Google Scholar 

  13. Parkinson, A., Sorensen, C., Pourhassan: A General Approach for Robust Optimal Design. J. mech. Des 115(1), 74–80 (1993)

    Article  Google Scholar 

  14. Putko, M., Newman, P., Taylor, A., Green, L.: Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives. In: Proceedings of the 15th AIAA Computational Fluid Dynamics Conference. Anaheim CA (2001). AIAA 2001–2528

    Google Scholar 

  15. Su, J., Renaud, J.E.: Automatic Differentiation in Robust Optimization. AIAA Journal 5(6), 1072–1079 (1996)

    Google Scholar 

  16. Tari, M., Dahmani, A.: Refined descriptive sampling: A better approach to Monte Carlo simulation. Simulation Modelling Practice and Theory 14(2), 143–160 (2006)

    Article  MathSciNet  Google Scholar 

  17. Torenbeek, E.: Synthesis of Subsonic Airplane Design. Delft University Press, Delft, Holland (1982)

    Google Scholar 

  18. Xiu, D., Karniadakis, E.M.: Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics 187, 137–167 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Padulo, M., Forth, S.A., Guenov, M.D. (2008). Robust Aircraft Conceptual Design Using Automatic Differentiation in Matlab. In: Bischof, C.H., Bücker, H.M., Hovland, P., Naumann, U., Utke, J. (eds) Advances in Automatic Differentiation. Lecture Notes in Computational Science and Engineering, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68942-3_24

Download citation

Publish with us

Policies and ethics