Skip to main content

Imaging and Evaluating Live Tissues at the Microscopic Level

  • Chapter
Advanced Imaging in Biology and Medicine
  • 2005 Accesses

Abstract

There are many ways in which images can be acquired, including the transmission, reflection, and emission of light, radiation, sound, magnetism, heat and other sources of energy. Some methods are more or less suitable for imaging living tissues and cells. Images, while informative and useful for generating hypotheses, may be quantified to actually test hypotheses. Various methods of image quantification are discussed, including pixel counting and stereology. Multimodal imaging, and multidimensional combinations of images with intensity information in the domains of genomics, proteomics, and metabolomics pave the way to a fuller understanding of biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams A (1981) The negative. The new Ansel Adams photography series, vol. 2. New York Graphic Society, Little Brown and Company, Boston, MA

    Google Scholar 

  • Baddeley AJ, Gundersen HJ, Cruz-Orive LM (1986) Estimation of surface area from vertical sections. J Microsc 142:259–276

    PubMed  CAS  Google Scholar 

  • Bereiter-Hahn Lüers H (1998) Subcellular tension fields and mechanical resistance of the lamella front related to the direction of locomotion. Cell Biochem Biophys 29:1085–1091

    Article  Google Scholar 

  • Boss DS, Olmos RV, Sinaasappel M, Beijnen JH, Schellens JH (2008) Application of PET/CT in the development of novel anticancer drugs. Oncologist 13:25–38

    Article  PubMed  CAS  Google Scholar 

  • Cara DC, Kubes P (2003) Intravital microscopy as a tool for studying recruitment and chemotaxis. In: D'Ambrosio D, Sinigaglia F (eds) Cell migration in inflammation and immunity (Methods in Molecular Biology, vol. 239). Humana, Clifton, UK

    Chapter  Google Scholar 

  • Cavalieri B. Geometria Indivivisibilibus Continuorum. Bononi: Typis Clementis Ferronij, 1635. Reprinted as Geometria degli Indivisibili. Torino: Unione Tipografico-Editrice Torinese, 1966

    Google Scholar 

  • Cutignola L, Bullough PG (1991) Photographic reproduction of anatomic specimens using ultraviolet illumination. Am J Surg Pathol 15:1096–1099

    Article  PubMed  CAS  Google Scholar 

  • Forrester KR, Tulip J, Leonard C, Stewart C, Bray RC (2004) A laser speckle imaging technique for measuring tissue perfusion. IEEE Trans Biomed Eng 51:2074–2084

    Article  PubMed  Google Scholar 

  • Gardi JE, Nyengard JR, Gundersen HJG (2008) Automatic sampling for unbiased and efficient stereological estimation using the proportionator in biological studies. J Microsc 230:108–120

    Article  PubMed  CAS  Google Scholar 

  • George N (2005) Microscopes expand near-infrared applications. Biophotonics March:1–4

    Google Scholar 

  • Gokhale AM (1990) Unbiased estimation of curve length in 3D using vertical slices. J Microsc 159:133–141

    Google Scholar 

  • Gokhale AM (1993) Estimation of length density Lv from vertical sections of unknown thickness. J Microsc 170:3–8

    Google Scholar 

  • Guillaud M, Matthews JB, Harrison A, MacAulay C, Skov K (1997) A novel image cytometric method for quantitation of immunohistochemical staining of cytoplasmic antigens. Analyt Cell Pathol 14:87–99

    CAS  Google Scholar 

  • Guillaud M, Cox D, Malpica A, Staerkel G, Matisic J, van Nickirk D, Adler-Storthz K, Poulin N, Follen M, MacAulay C (2004) Quantitative histopathological analysis of cervical intra-epithelial neoplasia sections: Methodological issues. Cell Oncology 26:31–43

    Google Scholar 

  • Gundersen HJ et al. (1981) Optimizing sampling efficiency of stereological studies in biology: or “do more less well.” J Microsc 121:65–73

    PubMed  CAS  Google Scholar 

  • Gundersen HJ et al. (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS. 96:857–881

    PubMed  CAS  Google Scholar 

  • Iga AM, Robertson JH, Winslet MC, Seifalian AM (2007) Clinical potential of quantum dots. J Biomed Biotechnol. 2007:76087

    PubMed  Google Scholar 

  • Inoué S, Oldenbourg R (1998) Microtubule dynamics in mitotic spindle displayed by polarized light microscopy. Mol Biol Cell 9:1603–1607

    PubMed  Google Scholar 

  • Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: Evidence for a long-term metabolic priming. Proc Natl Acad Sci USA 96:13807–13812

    Article  PubMed  CAS  Google Scholar 

  • Kamalov R, Guillaud M, Haskins D, Harrison A, Kemp R, Chiu D, Follen M, MacAulay C (2005) A Java application for tissue section image analysis. Comput Methods Programs Biomed 77:99–113

    Article  PubMed  CAS  Google Scholar 

  • Matyas JR, Benediktsson H, Rattner JB (1995) Transferring and culturing an architecturally intact layer of cells from animal tissue on membrane substrates. Biotechniques 19:540–544

    PubMed  CAS  Google Scholar 

  • Miao J, Chapman HN, Kirz J, Sayre D, Hodgson KO (2004) Taking X-ray diffraction to the limit: macromolecular structures from femtosecond X-ray pulses and diffraction microscopy of cells with synchrotron radiation. Annu Rev Biophys Biomol Struct 33:157–176

    Article  PubMed  CAS  Google Scholar 

  • Miretti S, Roato I, Taulli R, Ponzetto C, Cilli M et al. (2008) A mouse model of pulmonary metastasis from spontaneous osteosarcoma monitored in vivo by Luciferase imaging. PLoS ONE 3(3):e1828. doi:10.1371/journal.pone.0001828

    Article  PubMed  CAS  Google Scholar 

  • Mattfeldt T, Mall G, Gharehbaghi H, Moller P (1990) Estimation of surface area and length with the orientor. J. Microscopy 159:301–317

    CAS  Google Scholar 

  • Petibois C, Drogat B, Bikfalvi A, Déléris G, Moenner M (2007) Histological mapping of biochemical changes in solid tumors by FT-IR spectral imaging. FEBS Lett 581:5469–74

    PubMed  CAS  Google Scholar 

  • Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136

    PubMed  CAS  Google Scholar 

  • Stolz M, Raiteri R, Daniels AU, Van Landingham MR, Baschong W, Aebi U (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86:3269–3283

    Article  PubMed  CAS  Google Scholar 

  • Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2:26–40

    Article  PubMed  CAS  Google Scholar 

  • Weibel ER (1979) Stereological methods, vol. 1: practical methods for biological morphology. Academic, London

    Google Scholar 

  • Williams RM, Zipfel WR, Webb WW (2005) Interpreting second-harmonic generation images of collagen I fibrils. Biophys J 88:1377–1386

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Robert Matyas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matyas, J.R. (2009). Imaging and Evaluating Live Tissues at the Microscopic Level. In: Sensen, C.W., Hallgrímsson, B. (eds) Advanced Imaging in Biology and Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68993-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68993-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68992-8

  • Online ISBN: 978-3-540-68993-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics