Skip to main content

Voronoi Diagram of Polygonal Chains under the Discrete Fréchet Distance

  • Conference paper
Computing and Combinatorics (COCOON 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5092))

Included in the following conference series:

Abstract

Polygonal chains are fundamental objects in many applications like pattern recognition and protein structure alignment. A well-known measure to characterize the similarity of two polygonal chains is the (continuous/discrete) Fréchet distance. In this paper, for the first time, we consider the Voronoi diagram of polygonal chains in d-dimension under the discrete Fréchet distance. Given a set \({\cal C}\) of n polygonal chains in d-dimension, each with at most k vertices, we prove fundamental properties of such a Voronoi diagram VD F (\({\cal C}\)). Our main results are summarized as follows.

  • The combinatorial complexity of VD \(_F({\cal C})\) is at most O(n dk + ε).

  • The combinatorial complexity of VD \(_F({\cal C})\) is at least Ω(n dk) for dimension d = 1,2; and Ω(n d(k − 1) + 2) for dimension d > 2.

The authors gratefully acknowledge the support of K.C. Wong Education Foundation, Hong Kong and NSERC of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P., Aronov, B., Sharir, M.: Computing Envelopes in Four Dimensions with Applications. SIAM J. Comput. 26, 1714–1732 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt, H., Godau, M.: Measuring the Resemblance of Polygonal Curves. In: Proceedings of the 8th Annual Symposium on Computational Geometry (SoCG 1992), pp. 102–109 (1992)

    Google Scholar 

  3. Alt, H., Godau, M.: Computing the Fréchet Distance between Two Polygonal Curves. Intl. J. Computational Geometry and Applications 5, 75–91 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alt, H., Knauer, C., Wenk, C.: Matching Polygonal Curves with Respect to the Fréchet Distance. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 63–74. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Buchin, K., Buchin, M., Wenk, C.: Computing the Fréchet Distance between Simple Polygons in Polynomial Time. In: Proceedings of the 22nd Annual Symposium on Computational Geometry (SoCG 2006), pp. 80–87 (2006)

    Google Scholar 

  6. Edelsbrunner, H., Seidel, R.: Voronoi Diagrams and Arrangements. Discrete Comput. Geom. 1, 25–44 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eiter, T., Mannila, H.: Computing Discrete Fréchet Distance. Tech. Report CD-TR 94/64, Information Systems Department, Technical University of Vienna (1994)

    Google Scholar 

  8. Fréchet, M.: Sur Quelques Points du Calcul Fonctionnel. Rendiconti del Circolo Mathematico di Palermo 22, 1–74 (1906)

    Google Scholar 

  9. Godau, M.: On the Complexity of Measuring the Similarity between Geometric Objects in Higher Dimensions. PhD thesis, Freie Universität, Berlin (1998)

    Google Scholar 

  10. Indyk, P.: Approximate Nearest Neighbor Algorithms for Fréchet Distance via Product Metrics. In: Proceedings of the 18th Annual Symposium on Computational Geometry (SoCG 2002), pp. 102–106 (2002)

    Google Scholar 

  11. Jiang, M., Xu, Y., Zhu, B.: Protein Structure-structure Alignment with Discrete Fréchet Distance. In: Proceedings of the 5th Asia-Pacific Bioinformatics Conference (APBC 2007), pp. 131–141 (2007)

    Google Scholar 

  12. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Heidelberg (1985)

    Google Scholar 

  13. Schaudt, B., Drysdale, S.: Higher Dimensional Delaunay Diagrams for Convex Distance Functions. In: Proceedings of the 4th Canadian Conference on Computational Geometry (CCCG 1992), pp. 274–279 (1992)

    Google Scholar 

  14. Sharir, M.: Almost Tight Upper Bounds for Lower Envelopes in Higher Dimensions. Discrete Comp. Geom. 12, 327–345 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wenk, C.: Shape Matching in Higher Dimensions. PhD thesis, Freie Universität, Berlin (2002)

    Google Scholar 

  16. Zhu, B.: Protein Local Structure Alignment under the Discrete Fréchet Distance. J. Computational Biology 14(10), 1343–1351 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xiaodong Hu Jie Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bereg, S., Buchin, K., Buchin, M., Gavrilova, M., Zhu, B. (2008). Voronoi Diagram of Polygonal Chains under the Discrete Fréchet Distance. In: Hu, X., Wang, J. (eds) Computing and Combinatorics. COCOON 2008. Lecture Notes in Computer Science, vol 5092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69733-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69733-6_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69732-9

  • Online ISBN: 978-3-540-69733-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics