Skip to main content

Larval Settlement and Surfaces: Implications in Development of Antifouling Strategies

  • Chapter
Marine and Industrial Biofouling

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 4))

Marine biofouling is a natural process that imposes technical operational problems and economic losses on marine-related activities. Marine biofouling communities are complex, diverse, highly dynamic ecosystems consisting of a range of organisms. Larvae of these organisms spend a part of their lives in the planktonic stage before settling on a surface. Passive transport and deposition of larvae were considered responsible for the observed spatial variation in settlement pattern, whereas breeding season and larval survival have been associated with temporal fluctuations. Hydrodynamic conditions influence the transport and deposition of larvae near the surface boundary layer, while dissolved environmental stimuli have been associated with the induction of settlement and metamorphic behaviour. Over the last two decades, chemical cues and physiological processing of the cue hasbeen the subject of study. Sufficient information has been obtained on the settlement mechanisms, the nature of chemical substances, involvement of chemosensory receptors and signal transduction pathways downstream. Knowledge on the settlement mechanism is imperative for developing a suitable control strategy. At present, more is known about chemosensory reception and downstream processing of the sensory cue than the location of these receptors. The need to control biofouling on underwater surfaces has given rise to many different technologies. Conventional antifouling strategy employs the use of biocidal surface coatings. The rationale behind these coatings is to kill everything. Historically, different solutions for control of fouling have been employed. It was not until the development of cold-plastic antifouling paints (copper oxide and tributyltin oxide or fluoride) in the later part of the twentieth century that a truly long-lasting protection was achieved. Unfortunately, the accumulation of slow-degrading organotin moieties in the water column has resulted in sub-lethal effects on non-target organisms, which led to its progressive abandonment. Insights into the larval sensory recognition of physical cues and adhesion resulted in the development of foul release coatings based on low surface energy phenomenon. Another alternative approach for control of biofoulingand inhibition of larval settlement lies in inhibiting the neurophysiological processes involved in larval settlement. This has been experimented upon using natural bioactive molecules and synthetic analogues, which bind to specific receptors inhibiting larval settlement. Several pharmacological compounds, natural products and synthetic analogues that inhibit the metabolic processes underlying settlement have been identified through laboratory bioassays. However, realization of these compounds into commercial coatings is yet to happen. The reasons may be attributed to reproducibility of laboratory results in ecologically realistic field experiments. The need for suitable bioassays and knowledge of the broadspectrum activity of these compounds is obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afsar A, De Nys R, Steinberg P (2003) The effects of foul-release coatings on the settlement and behaviour of cyprid larvae of the barnacle Balanus amphitrite, Darwin. Biofouling 19:105–110

    PubMed  Google Scholar 

  • Aidley DJ (1978) The physiology of excitable cells. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Anderson MJ, Underwood AJ (1994) Effects of substratum on the recruitment and development of an intertidal estuarine fouling assemblage. J Exp Mar Biol Ecol 184:217–236

    Google Scholar 

  • Armstrong E, Boyd KG, Burgess JG (2000) Prevention of marine biofouling using natural compounds from marine organisms. Biotechnol Annu Rev 6:221–241

    PubMed  CAS  Google Scholar 

  • Baloun AJ, Morse DE (1984a) Modulation by unsaturated fatty acids of norepinephrine and adenosine induced formation of cyclic AMP in brain slices. J Neurochem 42:192–197

    Google Scholar 

  • Baloun AJ, Morse DE (1984b) Ionic control of settlement and metamorphosis in larval Haliotis rufescens (Gastropoda). Biol Bull 167:124–138

    CAS  Google Scholar 

  • Baum C, Simon F, Meyer W, Fleischer I, Siebers D, Kacza J, Seeger J (2003) Surface properties of the skin of the pilot Whale Globicephala melas. Biofouling 19:181–186

    PubMed  CAS  Google Scholar 

  • Beckmann M, Harder T, Qian PY (1999) Induction of larval attachment and metamorphosis in the serpulid polychaete Hydroides elegans by dissolved free amino acids: mode of action in laboratory bioassays. Mar Ecol Prog Ser 190:167–178

    CAS  Google Scholar 

  • Bers A, Wahl M (2004) The influence of natural surface microtopographies on fouling. Biofouling 20(1):43–51

    PubMed  CAS  Google Scholar 

  • Bers AV, Prendergast GS, Zurn CM, Hansson L, Head RM, Thomason JC (2006) A comparative study of the anti-settlement properties of Mytillid shells. Biol Lett 2:88–91

    PubMed  CAS  Google Scholar 

  • Bishop CD, Brandhorst BP (2001) NO/cGMP signaling and HSP90 activity represses metamorphosis in the sea urchin Lytechinus pictus. Biol Bull 201:394–404

    PubMed  CAS  Google Scholar 

  • Bonar DB (1976) Molluscan metamorphosis: a study in tissue transformation. Am Zool 16:573–591

    Google Scholar 

  • Bonar DB, Coon SL, Walch M, Weiner RM, Fitt W (1990) Control of oyster settlement and metamorphosis by endogenous and exogenous chemical cues. Bull Mar Sci 46(2):484–498

    Google Scholar 

  • Boudreau B, Bourget E, Simard Y (1990) Benthic invertebrate larval response to substrate characteristics at settlement: shelter preferences of the American lobster Homarus americanus. Mar Biol 106:191–198

    Google Scholar 

  • Bryan PJ, Qian PY, Kreider JL, Chia FS (1997) Induction of larval settlement and metamorphosis by pharmacological and conspecifics associated compounds in the serpulid polychaete Hydroides elegans. Mar Ecol Prog Ser 146:81–90

    CAS  Google Scholar 

  • Burke RD (1983) The induction of marine invertebrate larvae: stimulus and response. Can J Zool 61:1701–1719

    Google Scholar 

  • Butler AJ, van Altena IA, Dunne SJ (1996) Antifouling activity of lyso-platelet-activating factor extracted from Australian sponge Crella incrustans. J Chem Ecol 22:2041

    CAS  Google Scholar 

  • Butman CA, Grassle JP, Webb CM (1988) Substrate choices made by marine larvae settling in still water and in a flume flow. Nature 333:771–773

    Google Scholar 

  • Carman ML, Estes TG, Feinberg AW, Schumacher JF, Wilkerson W, Wilson LH, Callow ME, Callow JA, Brennan AB (2006) Engineered antifouling microtopographies-correlating wetta-bility with cell attachment. Biofouling 22(1–2):11–21

    PubMed  CAS  Google Scholar 

  • Carpizo-Ituarte E, Hadfield MG (2003) Transcription and translation inhibitors permit metamorphosis up to radiole formation in the Serpulid polychaete Hydroides elegans. Haswell Biol Bull 204:114–125

    CAS  Google Scholar 

  • Chambers LD, Stokes KR, Walsh FC, Wood RJK (2006) Modern approaches to marine antifoul-ing coatings. Surf Coat Technol 201:3642–3652

    CAS  Google Scholar 

  • Chesworth JC, Donkin ME, Brown T (2004) The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L). Aquat Toxicol 66:293–305

    PubMed  CAS  Google Scholar 

  • Clare AS, Nott JA (1994) Scanning electron microscopy of the fourth antennular segment of Balanus amphitrite amphitrite. J Mar Biol Assoc UK 74:967–970

    Google Scholar 

  • Clare AS, Freet RK, McClary Jr M (1994) On the antennular secretion of the cyprid of Balanus amphitrite amphitrite and its role as a settlement pheromone. J Mar Biol Assoc UK 74:243–250

    Google Scholar 

  • Clare AS, Thomas RF, Rittschof D (1995) Evidence for the involvement of cyclic AMP in the pheromonal modulation of barnacle settlement. J Exp Biol 198:655–664

    PubMed  CAS  Google Scholar 

  • Connell SD (1999) Effects of surface orientation on the cover of Epibiota. Biofouling 14(3):219–226

    Google Scholar 

  • Cooksey KE, Wigglesworth-Cooksey B, Long RA (2008) A strategy to pursue in selecting a natural antifoulant: a perspective. Springer Ser Biofilms. doi: 10.1007/7142_2008_11

    Google Scholar 

  • Coon SL, Bonar DB, Weiner RM (1985) Induction of settlement and metamorphosis of the pacific oyster, Crassostrea gigas (Thunberg) by l -DOPA and catecholamines. J Exp Mar Biol Ecol 94:211–221

    CAS  Google Scholar 

  • Cooper K (1982) A model to explain the induction of settlement and metamorphosis of eyed pediveligers of the blue mussel Mytilus edulis L by chemical and tactile cues. J Shellfish Res 2:117

    Google Scholar 

  • Couper JM, Leise EM (1996) Serotonin injections induce metamorphosis in larvae of the Gastropod mollusk Ilyanassa obsolete. Biol Bull 191:178–186

    CAS  Google Scholar 

  • Cowling MJ, Hodgkiess T, Parr ACS, Smith MJ, Marrs SJ (2000) An alternative approach to antifouling based on analogues of natural processes. Sci Total Environ 258:129–137

    PubMed  CAS  Google Scholar 

  • Crisp DJ (1974) Factors influencing thesettlementofmarine invertebratelarvae. In: Chemoreception in marine organisms. Academic, London, pp. 177–277

    Google Scholar 

  • Dahlstrom M, Martensson LGE, Jonsson PR, Arnebrant T, Elwing H (2000) Surface active adrenoceptor compounds prevent the settlement of cyprid larvae of Balanus improvisus. Biofouling 16(2–4):191–203

    CAS  Google Scholar 

  • Dahlstrom M, Jonsson H, Jonsson PR, Elwing H (2004) Surface wettability as a determinant in the settlement of the barnacle Balanus improvisus (Darwin). J Exp Mar Biol Ecol 305:223–232

    Google Scholar 

  • Dahlstrom M, Lindgren F, Berntsson K, Sjogren M, Martensson LG, Jonsson PR, Elwing H (2005) Evidence for different pharmacological targets fro imidazoline compounds inhibiting settlement of the barnacle Balanus improvisus. J Exp Zool 303(7):551–562

    Google Scholar 

  • Dahms HU, Jin T, Qian PY (2004) Adrenoreceptor compounds prevent the settlement of marine invertebrate larvae: Balanus amphitrite (Cirripedia), Bugula neritina (Bryozoa) and Hydroides elegans (Polychaeta). Biofouling 20(6):313–323

    PubMed  CAS  Google Scholar 

  • Dalsin JL, Messersmith PB (2005) Bioinspired antifouling polymers. Mater Today 8:38–46

    CAS  Google Scholar 

  • de Nys R, Steinberg PD (2002) Linking marine biology and biotechnology. Curr Opin Biotechnol 13(3):244–248

    PubMed  Google Scholar 

  • de Nys R, Wright AD, Koning GM, Sticher O (1993) New halogenated furanones from the marine alga Delisea pulchara (fimbriata). Tetrahedron 49:11213–11220

    Google Scholar 

  • de Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabelish CB, King RJ (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259

    Google Scholar 

  • Dobretsov S, Qian PY (2002) Effect of bacteria associated with the green alga Ulva reticulate on marine micro- and macrofouling. Biofouling 18:217–228

    Google Scholar 

  • Dobretsov S, Qian PY (2003) Pharmacological Induction of larval settlement and Metamorphosis in the blue mussel Mytilus edulis L. Biofouling 19(1):57–63

    PubMed  Google Scholar 

  • Dobretsov S, Dahms H, Qian PY (2004) Antilarval and antimicrobial activity of waterborne metabolites of the sponge Callyspongia (Euplacella pulvinata): evidence of allelopathy. Mar Ecol Prog Series 271:133–146

    Google Scholar 

  • Dobretsov S, Dahms HU, Qian PY (2006) Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22(1–2):43–54

    PubMed  CAS  Google Scholar 

  • Epifanio RA, da Gama BAP, Pereira RC (2006) 11b-12b-Epoxypukalide as the antifouling agent from the Brazilian endemic sea fan Phyllogorgia dilatata Esper (Octocorallia, Gorgoniidae). Biochem Syst Ecol 34:446–448

    CAS  Google Scholar 

  • Faimali M, Falugi G, Gallus I, Piazza V, Tagliafierro G (2003a) Involvement of acetyl choline in settlement of Balanus amphitrite. Biofouling 19:213–220

    CAS  Google Scholar 

  • Faimali M, Sepcic K, Turk T, Geraci S (2003b) Non-toxic antifouling activity of polymeric 3-alkylpyridinium salts from the mediterranean sponge Reniera sarai (Pulitzer-Finali). Biofouling 19 (1):47–56

    CAS  Google Scholar 

  • Faimali M, Garaventa F, Mancini I, Sicurelli A, Guella G, Piazza V, Greco G (2005) Antisettlement activity of synthetic analogues of polymeric 3-alkylpyridinium salts isolated from the sponge Reniera sarai. Biofouling 21(1):49–57

    PubMed  CAS  Google Scholar 

  • Forde SE, Raimondi PT (2004) An experimental test of the effects of variation in recruitment intensity on intertidal community composition. J Exp Mar Biol Ecol 301:1–14

    Google Scholar 

  • Froggett SJ, Leise EM (1999) Metamorphosis in the marine snail Ilyanassa obsoleta, yes or no? Biol Bull 196:57–62

    CAS  Google Scholar 

  • Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21:94–104

    PubMed  CAS  Google Scholar 

  • Galsby TM (1999) Effects of shading on subtidal epibiotic assemblages. J Exp Mar Biol Ecol 234:275–290

    Google Scholar 

  • Galsby TM (2000) Surface composition and orientation interact to affect subtidal epibiota. J Exp Mar Biol Ecol 248:177–190

    Google Scholar 

  • Guenther J, DeNys R (2006) Differential community development of fouling species on the pearl oysters Pinctada fucata, Pteria penguin and Pteria chinensis (Bivalvia, Pteriidae). Biofouling 22(3–4):163–171

    PubMed  CAS  Google Scholar 

  • Hadfield MG (1978) Metamorphosis in marine Molluscan larvae: an analysis of stimulus and response. In: ChiaFS, Rice ME (eds.) Settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York, pp. 165–175

    Google Scholar 

  • Hadfield MG (1984) Settlement requirements of Molluscan larvae new data on chemical and genetic roles. Aquaculture 39:283–298

    CAS  Google Scholar 

  • Harder T (2008) Marine epibiosis — concepts, ecological consequences and host defense. Springer Ser Biofilms. doi: 10.1007/7142_2008_16

    Google Scholar 

  • Harder T, Qian PY (1999) Induction of larval attachment and metamorphosis in the serpulid poly-chaete Hydroides elegans by dissolved free amino acids: isolation and identification. Mar Ecol Prog Ser 179:259–271

    Google Scholar 

  • Harder T, Dobretsov S, Qian PY (2004) Waterborne polar macromolecules act as algal antifou-lants in the seaweed Ulva reticulata. Mar Ecol Prog Ser 274:133–141

    CAS  Google Scholar 

  • Hirata KY, Hadfield MG (1986) The role of choline in metamorphic induction of Phestilla (Gastropoda: Nudibranchia). Comp Biochem Physiol 84C:15–21

    CAS  Google Scholar 

  • Hirota H, Okino T, Yoshimura E, Fusetani N (1998) Five new antifouling sesquiterpenes from two marine sponges of the genus Axinyssa and the Nudibranch Phyllidia pustulosa. Tetrahedron 54:13971–13980

    CAS  Google Scholar 

  • Hodgkin AL, Horowicz P (1959) The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol 148:127–160

    PubMed  CAS  Google Scholar 

  • Hoeg J, Hosfeld B, Gram-Jensen P (1988) TEM studies on the lattice organs of cirripede cypris larvae (Crustacea Thecostraca, Cirripedia). Zoomorphology 118:195–205

    Google Scholar 

  • Hoipkemeier-Wilson L, Schumacher JF, Carman ML, Gibson AL, Feinberg AW, Callow ME, Finlay JA, Callow JA, Brennan AB (2004) Antifouling potential of lubricious, micro-engineered, PDMS elastomers against zoospores of the green fouling alga Ulva (Enteromorpha). Biofouling 20(1):53–63

    Google Scholar 

  • Holiday JE (1996) Effects of surface orientation and slurry coating on settlement of Sydney rock Saccostrea commercialis oysters on PVC slats in hatchery. Aquaculture Eng 15(3):159–168

    Google Scholar 

  • Holm ER, Nedved BT, Carpizo-Ituarte E, Hadfield MG (1998) Metamorphic signal transduction in Hydroides elegans (Polychaeta: Serpulidae) is not mediated by a G protein. Biol Bull 195:21–29

    CAS  Google Scholar 

  • Holmstrom C, Rittschof D, Kjelleberg S (1992) Inhibition of settlement by larvae of Balanus amphitrite and Ciona intestinalis by a surface colonizing marine bacterium. Appl Env Microbiol 2111–2115

    Google Scholar 

  • Holmstrom C, Egan S, Franks A, McCloy S, Kjelleberg S (2002) Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol Ecol 41:47–58

    CAS  Google Scholar 

  • Ilan M, Jensen RA, Morse DE (1993) Calcium control of metamorphosis in polycheate larvae. J Exp Zool 267:423–430

    PubMed  CAS  Google Scholar 

  • Kaissling KE, Thorson J (1980) Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organizations. In: Satelle DB, Hall LM, Hildebrand JG (eds.) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier/North Holland Biomedical, New York, pp. 261–282

    Google Scholar 

  • Kavanagh CJ, Schultz MP, Swain GW, Stein J, Truby K, Darkangelo-Wood C (2001) Variation in adhesion strength of Balanus eburneus, Crassostrea virginica and Hydroides dianthus to fouling-release coatings. Biofouling 17:155–167

    CAS  Google Scholar 

  • Kawamata M, Kon-ya K, Miki W (2006) 5,6-Dichloro-1-methylgramine, a non-toxic antifoulant derived from a marine natural product. Prog Mol Subcell Biol 42:125–139

    PubMed  CAS  Google Scholar 

  • Kaye HR, Reiswig HM (1991) Sexual reproduction in four Caribbean commercial sponges. III. Larval behavior, settlement and metamorphosis. J Invert Reprod 19:25–35

    Google Scholar 

  • Kem WR, Soti F, Rittschof D (2003) Inhibition of barnacle larval settlement and crustacean toxic-ity of some hoplonemertine pyridyl alkaloids. Biomol Eng 20:355–361

    PubMed  CAS  Google Scholar 

  • Kitano Y, Nogata Y, Shinshima K, Yoshimura E, Chiba K, Tada M, Sakaguchi I (2004) Synthesis and anti-barnacle activities of novel isocyanocylohexane compounds containing an ester or ether functional group. Biofouling 20(2):93–100

    PubMed  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment review. Environ Int 30:235–248

    PubMed  CAS  Google Scholar 

  • Kon-ya K, Shimidzu N, Adachi K, Miki W (1994) 2,5,6-Tribromo-1-methylgramine, an antifoul-ing substance from the marine bryozoan Zoobotryon pellucidum. Fish Sci 60(6):773–775

    CAS  Google Scholar 

  • Kon-ya K, Wataru M, Endo M (1995) l-Tryptophan and related compounds induce settlement of the barnacle Balanus amphitrite Darwin. Fish Sci 61(5):800–803

    CAS  Google Scholar 

  • Kuffler SW, Nicholls JG, Martin AR (1984) From neuron to brain. Sinauer Associatea, Sunderland, MA, pp. 651

    Google Scholar 

  • Lambert SJ, Thomas KV, Davy AJ (2006) Assessment of the risk posed by the antifouling booster biocides Irgarol 1051 and Diuron to freshwater. Chemosphere 63:734–743

    PubMed  CAS  Google Scholar 

  • Lee OO, Qian PY (2004) Potential control of bacterial epibiosis on the surface of the sponge Mycale adherens. Aquat Microb Ecol 34:11–21

    Google Scholar 

  • Leise EM, Thavradhara K, Durhan NR, Turner BE (2001) Serotonin and nitric oxide regulate metamorphosis in the marine snail Ilyanassa obsoleta. Am Zool 41:258–267

    CAS  Google Scholar 

  • Leitz T, Klingmann G (1990) Metamorphosis in Hydractinia: studies with activators and inhibitors aiming at protein kinase C and potassium channels. Rouxs Arch Dev Biol 199:107–113

    CAS  Google Scholar 

  • Leitz T, Muller WA (1987) Evidence for the involvement of PI-signalling and diacylglycerol second messengers in the initiation of metamorphosis in the hydroid Hydractinia echinata. Fleming Dev Biol 121:82–89

    CAS  Google Scholar 

  • Leitz T, Beck H, Stephan M, Lehmann WD, Petrocellis LDE, Marzo VDI (1994) Possible involvement of arachidonic acid and eicosanoids in metamorphic events in Hydractina echinata (Coelenterata; Hydrozoa). J Exp Zool 269:422–431

    PubMed  CAS  Google Scholar 

  • LeTourneux F, Bourget E (1988) Importance of physical and biological settlement cues used at different spatial scales by the larvae of Semibalanus balanoides. Mar Biol 97:57–66

    Google Scholar 

  • Levantine PL, Bonar DB (1986) Metamorphosis of Ilyanassa obsoleta natural and artificial induc-ers. Am Zool 26:14A

    Google Scholar 

  • Lewandowski Z, Beyenal H (2008) Mechanisms of microbially influenced corrosion. Springer Ser Biofilms. doi: 10.1007/7142_2008_8

    Google Scholar 

  • Matsumara K, Mori S, Nagano M, Fusetani N (1998) Lentil lectin inhibits adult extract-induced settlement of the barnacle Balanus amphitrite. J Exp Zool 280:213

    Google Scholar 

  • Meyer A, Baier R, Wood CD, Stein J, Truby K, Holm E, Montemarano J, Kavanagh C, Nedved B, Smith C, Swain G, Wiebe D (2006) Contact angle anomalies indicate that surface-active elu-ates from silicone coatings inhibit the adhesive mechanisms of fouling organisms. Biofouling 22(5–6):411–423

    PubMed  CAS  Google Scholar 

  • Mihm JW, Banta WC, Loeb GI (1981) Effects of adsorbed organic and primary fouling films on bryozoan settlement. J Exp Mar Biol Ecol 54:167–179

    Google Scholar 

  • Millineaux LS, Garland ED (1993) Larval recruitment in response to manipulated field flows. Mar Biol 116:667–683

    Google Scholar 

  • Morita H (1972) Primary process of insect chemoreception. Adv Biophys 3:161–198

    PubMed  CAS  Google Scholar 

  • Morse DE, Hooker N, Duncan H, Jensen L (1979) Gamma-amino butyric acid — a neurotransmitter induces planktonic abalone larvae to settle and begin metamorphose. Science 204:407–410

    PubMed  CAS  Google Scholar 

  • Morse ANC, Froyd CA, Morse DE (1984) Molecules from cyanobacteria and red algae that induce larval settlement and metamorphosis in the mollusc Haliotis rufescens Mar Biol 81:293–298

    CAS  Google Scholar 

  • Morse DE (1992) Molecular mechanisms controlling metamorphosis and recruitment in abalone larvae. In: Shepherd SA, Tegner MJ, Guzman del Proo SA (eds.) Abalone of the world. Blackwell, Oxford, pp. 107–119

    Google Scholar 

  • Muller WA, Buchal G (1973) Metamorphose-Induktion bei Planulalarven. II Induktion durch monovalente Kationen: Die Bedeutung des Gibbs-Donnan-Verhältnisses und der Na+/K+-ARPase. Wilhelm Roux Arch 173:122–135

    Google Scholar 

  • Murthy PS (1999) Studies on the factors influencing larval settlement and metamorphosis in Crassostrea madrasensis (Preston) and its control using bioactive compounds. PhD thesis, University of Madras, pp. 105

    Google Scholar 

  • Murthy PS, Venugopalan VP, Nair KVK, Subramoniam T (1999) Chemical cues inducing settlement and metamorphosis in the fouling oyster Crassostrea madrasensis. J Ind Inst Sci 79:513–526

    CAS  Google Scholar 

  • Natasha IG, William B, Loeb GI (2002) Aquatic biofouling larvae respond to differences in the mechanical properties of the surface on which they settle. Biofouling 18 (4):269–273

    Google Scholar 

  • Nedved BT, Hadfield MG (2008) Hydroides elegans (Annelida: Polychaeta): a model for biofoul-ing research. Springer Ser Biofilms. doi: 10.1007/7142_2008_15

    Google Scholar 

  • Neil JA, Holliday JE (1986) Effects of potassium and copper on the settling rate of Sydney Rock Oyster (Saccostrea commercialis) larvae. Aquaculture 58:263–267

    Google Scholar 

  • Nogata V, Yoshimura V, Shinshima K, Kitano Y, Sakaguchi I (2003) Antifouling substances against larvae of the barnacle Balanus amphitrite from the marine sponge, Acanthella caver-nosa Biofouling 19:193–196

    CAS  Google Scholar 

  • Nott JA, Foster BA (1969) On the structure of the antennular attachment organ of the cypris larva of Balanus balanoides. Phil Trans R Soc 256:115–133

    Google Scholar 

  • Nymer M, Cope E, Brady R, Shirtliff ME, Leid JG (2008) Immune responses to indwelling medical devices. Springer Ser Biofilms. doi: 10.1007/7142_2008_4

    Google Scholar 

  • Okano K, Shimizu K, Satuito CG, Fusetani N (1996) Visualization of cement exocytosis in the cypris cement gland of the barnacle Megabalanus rosa. J Exp Biol 199:2131–2137

    PubMed  Google Scholar 

  • Okazaki Y, Shizuri Y (2000) Effect of inducers and inhibitors on the expression of bcs genes involved in cypris larval attachment and metamorphosis of the barnacles Balanus amphitrite. Int J Dev Biol 44:451–456

    PubMed  CAS  Google Scholar 

  • Okino T, Yoshimura E, Hirota H, Fusetani N (1995) Antifouling kalihinenes from the marine sponge Acanthella cavernosa. Tetrahedron Lett 36(47):8637–8640

    CAS  Google Scholar 

  • Okino T, Yoshimura E, Hirota H, Fusetani N (1996) New antifouling sesquiterpenes from four nudibranchs of the family Phyllidiidae. Tetrahedron 52(28):9447–9454

    CAS  Google Scholar 

  • Olguin-Uribe G, Abou-Mansour E, Boulander A, Debard H, Francisco C, Combaur G (1997) 6-Bromoindole-3-carbaldehyde, form an Acinetobacter sp. bacterium associated with the ascidian Stomoza murrayi. J Chem Ecol 23:2507–2521

    Google Scholar 

  • Olsen SM, Pedersen LT, Laursen MH, Kill S, Dam-Hohansen K (2007) Enzyme-based antifouling coatings: a review. Biofouling 23(5):369–383

    PubMed  CAS  Google Scholar 

  • Ortlepp S, Sjogren M, Dahlstrom M, Weber H, Ebel R, Edrada R, Thomas C, Schup P, Bohlin L, Proksch P (2007) Antifouling activity of bromotyrosine-derived sponge metabolites and synthetic analogues. Mar Biotechnol 23

    Google Scholar 

  • Pawlik JR (1990) Natural and artificial induction of metamorphosis of Phragmatopoma lapidosa californica (Polychaeta: Sabellariidae) with a critical look at the effects of bioactive compounds on marine invertebrate larvae. Bull Mar Sci 46(2):512–535

    Google Scholar 

  • Pawlik JR, Butman CA, Starczak VR (1991) Hydrodynamic facilitation of gregarious settlement of a reef-building tube worm. Science 251:421–424

    PubMed  Google Scholar 

  • Pechenik JA, Li W, Cochrane DE (2002) Timing is everything: the effects of putative dopamine antagonists on metamorphosis vary with larval age and experimental duration in the proso-branch gastropod Crepidula fornicate. Biol Bull 202:137–147

    PubMed  CAS  Google Scholar 

  • Pennington KT, Hadfield MG (1988) Larvae of a Nudibranch mollusc (Phestilla sibogae) metamorphose when exposed to common organic solvents. Biol Bull 177:350–355

    Google Scholar 

  • Pernet F, Tremblay R, Bourget E (2003) Settlement success, spatial pattern and behavior of mussel larvae Mytilus sp. in experimental down-welling systems of varying velocity and turbulence. Mar Ecol Prog Ser 260:125–140

    Google Scholar 

  • Pereira RC, Carvalho AGV, Gama BAP, Countinho R (2002) Field experimental evaluation of secondary metabolites from marine invertebrates as antifoulants. Braz J Biol 62(2):311–320

    PubMed  CAS  Google Scholar 

  • Pettitt ME, Henry SI, Callow ME, Callow JA, Clare AS (2004) Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta Biofouling 20(6):299–311

    CAS  Google Scholar 

  • Rittschof D (2001) Natural product antifoulants and coating development. In: McClintock JB, Baker BJ (eds.) Marine chemical ecology. CRC, Boca Raton, pp. 543–566

    Google Scholar 

  • Rittschof D, Costlow JD (1989a) Surface determination of macro invertebrate larvae settlement. In: Klekowsky RZ, Styczynska-Jureqwicz E, Falkowsky J (eds.) Proceedings of the 21st European marine biology symposium, Gdansk, 14–19 Sept 1996. Ossolineum, Gdansk, pp. 155–163

    Google Scholar 

  • Rittschof D, Costlow JD (1989b) Bryozoan and barnacle settlement in relation to initial surface wettability: a comparison of laboratory and filed studies. In: Ros JD (ed.) Topics in marine biology: proceedings of 22nd European marine biology symposium, Barcelona, 17–22 August 1987: Scientia Marina, Barcelona, pp. 411–416

    Google Scholar 

  • Rittschof D, Branscomb ES, Costlow JD (1984) Settlement and behavior in relation to flow and surface in larval barnacle, Balanus amphitrite Darwin. J Exp Mar Biol Ecol 82:131–146

    Google Scholar 

  • Rittschof D, Hooper IR, Branscomb ES, Costlow JD (1985) Inhibition of barnacle settlement and behavior by natural products from whip corals, Leptogorgia virgulata (Lamarck, 1815). J Chem Ecol 11:551–563

    Google Scholar 

  • Rittschof D, Maki J, Mitchel R, Costlow JD (1986) Ion and neuropharmacological studies of barnacle settlement. Neth J Sea Res 20:269–275

    CAS  Google Scholar 

  • Roberts D, Rittschof D, Holm E, Schmidt AR (1991) Factors influencing initial larval settlement: temporal, spatial and surface molecular components. J Exp Mar Biol Ecol 150:203–211

    Google Scholar 

  • Ryland RS (1974) Behaviour, settlement and metamorphosis of bryozoan larvae: a review. Thalassia Jugoslavica 10:239–262

    Google Scholar 

  • Ryle M (1999) Are TBT alternatives as good? The Motor Ship. pp. 34–39

    Google Scholar 

  • Scardino A, Nys RD, Ison O, O'Connor W, Steinberg P (2003) Microtopography and antifouling properties of the shell surface of the bivalve molluscs Mytilus galloprovincialis and Pinctada imbricate. Biofouling 19:221–230

    PubMed  Google Scholar 

  • Scardino AJ, de Nys R (2004) Fouling deterrence on the bivalve shell Mytilus galloprovincialis: a physical phenomenon. Biofouling 20(4–5):249–257

    PubMed  CAS  Google Scholar 

  • Schmitt TM, Hay ME, Lindquist N (1995) Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76:107–123

    Google Scholar 

  • Schneider T, Leitz T (1994) Protein kinase C in hydrozoans: involvement in metamorphosis of Hydractinia and in pattern formation of Hydra. Roux's Arch Dev Biol 203:422–428

    CAS  Google Scholar 

  • Schoenfeld RC, Ganem B (1998) Synthesis of ceratinamine and moloka'iamine: antifouling agents from the marine sponge Pseudoceratina purpurea. Tetrahedron Lett 39:4147–4150

    CAS  Google Scholar 

  • Schoenfeld RC, Conova S, Rittschof D, Ganem B (2002) Cytotoxic, antifouling bromotyramines: a synthetic study on simple marine natural products and their analogues. Bioorg Med Chem Lett 12:823–825

    PubMed  CAS  Google Scholar 

  • Schumacher JF, Aldred N, Callow ME, Finlay JA, Callow JA, Clare AS, Brennan AB (2007) Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids. Biofouling 23(5):307–317

    PubMed  Google Scholar 

  • Sepcic K, Turk T (2006) 3-Alkylpyridinium compounds as potential non-toxic antifouling agents. In: Fusetani N, Clare AS (eds.) Antifouling compounds. Progress in molecular and subcellular biology, vol 42. Springer Berlin Heidelberg New York, pp. 105–124

    Google Scholar 

  • Sepcic K, Marcel V, Klaebe A, Turk T, Sćuput D, Fournier D (1998) Inhibition of acetylchloineste-rase by an alkylpyridinium polymer from the marine sponge, Reniera sarai Biochim Biophys Acta 1387:217–225

    CAS  Google Scholar 

  • Sjogren M, Dahlstrom M, Goransson U, Jonsson P, Bohlin L (2004) Recruitment in the field of Balanus improvisus and Mytilus edulis in response to the antifouling cyclopeptides barettin and 8,9-dihydrobarettin from the marine sponge Geodia barrette. Biofouling 20(6):291–297

    PubMed  Google Scholar 

  • Sjogren M, Johnson AL, Hedner E, Dahlstrom M, Goransson U, Shirani H, Bergman J, Jonsson PR, Bohlin L (2006) Antifouling activity of synthesized peptide analogs of the sponge metabolite. Barettin Peptides 27:2058–2064

    Google Scholar 

  • Statz A, Finaly J, Dalsin J, Callow M, Callow JA, Messersmith PB (2006) Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels. Biofouling 22(5–6):391–399

    PubMed  CAS  Google Scholar 

  • Steinberg PD, De Nys TD, Kjelleberg S (1998) Chemical inhibition of epibiota by Australian seaweeds. Biofouling 12(1–3):227–244

    Google Scholar 

  • Steinberg PD, De Nys R, Kjelleberg S (2001) Chemical mediation of surface colonization. In: McClintock J, Baker B(eds.) Marine chemical ecology. CRC, Boca Raton, pp. 325–353

    Google Scholar 

  • Steinberg PD, De Nys R, Kjelleberg S (2002) Chemical cues for surface colonization. J Chem Ecol 28:1935–1951

    PubMed  CAS  Google Scholar 

  • Sulkin SD (1984) Behavioral basis of depth regulation in the larvae of brachyuran crabs. Mar Ecol Prog Ser 15:181–205

    Google Scholar 

  • Swain G (1988) Proceedings of the international symposium on sea water drag reduction. Naval Undersea Warfare Center, Newport, pp. 155–161

    Google Scholar 

  • Tegtmeyer K, Rittschof D (1989) Synthetic peptide analogs to barnacle settlement pheromone. Peptides 9:1403–1406

    Google Scholar 

  • Thomas JG, Corum L, Miller K (2008) Biofilms and ventilation. Springer Ser Biofilms. doi: 10.1007/7142_2008_7

    Google Scholar 

  • Thorson G (1964) Light as an ecological factor in the dispersal and settlement of larvae of marine bottom invertebrates. Ophelia 1:187–208

    Google Scholar 

  • Thurm U, Wessel G (1979) Metabolism-dependant transepithelial potential differences at epidermal receptors of arthropods. J Comp Physiol 134A:119–130

    Google Scholar 

  • Tomono Y, Hirota H, Fusetani N (1998) Antifouling compounds against barnacle (Balanus amphitrite) larvae from the marine sponge Acanthella cavernosa. In: Watanabe Y, Fusetani N (eds.) Sponge sciences – multidisciplinary perspectives. Springer Berlin Heidelberg New York, pp. 413 – 424

    Google Scholar 

  • Tsoukatou M, Marechal JP, Hellio C, Novakovic I, Tufegdzic S, Sladic D, Gasic MJ, Clare AS, Vagias C, Roussis V (2007) Evaluation of the activity of the sponge metabolites Avarol and Avarone and their synthetic derivatives against fouling micro- and macroorganisms. Molecules 12:1022–1034

    PubMed  CAS  Google Scholar 

  • Tsukamoto S, Kato S, Hirota H, Fusetani N (1996) Pseudoceratidine: a new antifouling spermi-dine derivative from the marine sponge Pseudoceratina purpurea. Tetrahedron Lett 37(9):1439–1440

    CAS  Google Scholar 

  • Walters LJ (1992) Field settlement locations on subtidal marine hard substrata: is active larval exploration involved? Limnol Oceanogr 37:1101–1107

    Google Scholar 

  • Yamamoto H, Satuito CG, Yamazaki M, Natoyama K, Tachibana A, Fusetani N (1998) Neurotransmitter blockers as antifoulants against planktonic larvae of the barnacle Balanus amphitrite and the mussel Mytilus galloprovincialis. Biofouling 13:69–82

    CAS  Google Scholar 

  • Yamamoto H, Tachilbana A, Matsumura K, Fusetani N (1995) Protein kinase C (PKC) singal transduction system involved in larval metamorphosis of the barnacle, Balanus amphitrite Zool Sci 12:391–396

    CAS  Google Scholar 

  • Yang LH, Lee O, Jin T, Li XC, Qian PY (2006) Antifouling properties of 10b-formamidokalihi-nol-A and kalihinol A isolated from the marine sponge Acanthella cavernosa. Biofouling 22(1–2):23–32

    PubMed  Google Scholar 

  • Yang LH, Lau SCK, Lee OO, Tsoi MMY, Qian PY (2007) Potential roles of succinic acid against colonization by a tubeworm. J Exp Mar Biol Ecol 349:1–11

    CAS  Google Scholar 

  • Yebra DM, Kiil S, Dam—Johansen K (2004) Antifouling technology — past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    CAS  Google Scholar 

  • Yool AJ, Grau SM, Hadfield MG, Jensen RA, Markell DA, Morse DE (1986) Excess potassium induces larval metamorphosis in four marine invertebrate species. Biol Bull 170:255–266

    CAS  Google Scholar 

  • Young CM, Chia FS (1987) Abundance and distribution of pelagic larvae as influenced by preda-tion behavior and hydrographic factors. In: Giese AC, Pearse JS (eds.) Reproduction of marine invertebrates, vol 9. Blackwell, Palo Alto, pp. 385–453

    Google Scholar 

  • Youngblood JP, Andruzzi L, Ober CK, Hexemer A, Kramer EJ, Callow JA, Finaly JA, Callow ME (2003) Coatings based on side-chain ether-linked poly(ethylene glycol) and fluorocarbon poly mers for the control of marine biofouling. Biofouling 19:91–98

    PubMed  CAS  Google Scholar 

  • Zapata M, Silva F, Luza Y, Wilkens M, Riquelme C (2007) The inhibitory effect of biofilms produced by wild bacterial isolates to the larval settlement of the fouling ascidia Ciona intestinalis and Pyura praeputialis. Electron J Biotechnol 10(1):149–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sriyutha Murthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murthy, P.S., Venugopalan, V.P., Nair, K.V.K., Subramoniam, T. (2009). Larval Settlement and Surfaces: Implications in Development of Antifouling Strategies. In: Flemming, HC., Murthy, P.S., Venkatesan, R., Cooksey, K. (eds) Marine and Industrial Biofouling. Springer Series on Biofilms, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69796-1_13

Download citation

Publish with us

Policies and ethics