Skip to main content

Nucleocapsid Structure and Function

  • Chapter
Measles

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 329))

Measles virus belongs to the Paramyxoviridae family within the Mono-negavirales order. Its nonsegmented, single-stranded, negative-sense RNA genome is encapsidated by the nucleoprotein (N) to form a helical nucleocapsid. This ribonucleoproteic complex is the substrate for both transcription and replication. The RNA-dependent RNA polymerase binds to the nucleocapsid template via its co-factor, the phosphoprotein (P). This chapter describes the main structural information available on the nucleoprotein, showing that it consists of a structured core (NCORE) and an intrinsically disordered C-terminal domain (NTAIL). We propose a model where the dynamic breaking and reforming of the interaction between NTAIL and P would allow the polymerase complex (L–P) to cartwheel on the nucleocapsid template. We also propose a model where the flexibility of the disordered N and P domains allows the formation of a tripartite complex (N°—P—L) during replication, followed by the delivery of N monomers to the newly synthesized genomic RNA chain. Finally, the functional implications of structural disorder are also discussed in light of the ability of disordered regions to establish interactions with multiple partners, thus leading to multiple biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertini A AV, Schoehn G, Ruigrok RW (2005) Structures impliquées dans la réplication et la transcription des virus à ARN non segmentés de sens négatif. Virologie 9:83–92

    Google Scholar 

  • Albertini AA, Wernimont AK, Muziol T, Ravelli RB, Clapier CR, Schoehn G, Weissenhorn W,Ruigrok RW (2006) Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 313:360–363

    Article  PubMed  CAS  Google Scholar 

  • Baker SC, Moyer SA (1988) Encapsidation of Sendai virus genome RNAs by purified NP protein during in vitro replication. J Virol 62:834–838

    PubMed  CAS  Google Scholar 

  • Bankamp B, Horikami SM, Thompson PD, Huber M, Billeter M, Moyer SA (1996) Domains of the measles virus N protein required for binding to P protein and self-assembly. Virology 216:272–277

    Article  PubMed  CAS  Google Scholar 

  • Belle V, Rouger S, Constanzo S, Liquière E, Strancar J, Guigliarelli B, Fournel A, and Longhi S (2008) Mapping alpha-helical induced folding within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein, by site-directed spin-labeling EPR spectroscopy.Proteins: Structure, Function and Bioinformatics (In press)

    Google Scholar 

  • Bernado P, Blanchard L, Timmins P, Marion D, Ruigrok RW, Blackledge M (2005) A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering.Proc Natl Acad Sci U S A 102:17002–17007

    Article  PubMed  CAS  Google Scholar 

  • Bhella D, Ralph A, Murphy LB, Yeo RP (2002) Significant differences in nucleocapsid morphology within theParamyxoviridae. J Gen Virol 83:1831–1839

    PubMed  CAS  Google Scholar 

  • Bhella D, Ralph A, Yeo RP (2004) Conformational flexibility in recombinant measles virus nucleocapsids visualised by cryo-negative stain electron microscopy and real-space helical reconstruction. J Mol Biol 340:319–331

    Article  PubMed  CAS  Google Scholar 

  • Biswas R, Kuhne H, Brudvig GW, Gopalan V (2001) Use of EPR spectroscopy to study macro-molecular structure and function. Sci Prog 84:45–67

    Article  PubMed  CAS  Google Scholar 

  • Bitko V, Barik S (2001) Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol 1:34

    Article  PubMed  CAS  Google Scholar 

  • Blanchard L, Tarbouriech N, Blackledge M, Timmins P, Burmeister WP, Ruigrok RW, Marion D (2004) Structure and dynamics of the nucleocapsid-binding domain of the Sendai virus phos-phoprotein in solution. Virology 319:201–211

    Article  PubMed  CAS  Google Scholar 

  • Blumberg BM, Giorgi C, Kolakofsky D (1983) N protein of vesicular stomatitis virus selectively encapsidates leader RNA in vitro. Cell 32:559–567

    Article  PubMed  CAS  Google Scholar 

  • Bourhis J, Johansson K, Receveur-Bréchot V, Oldfield CJ, Dunker AK, Canard B, Longhi S (2004) The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon binding to their physiological partner. Virus Res 99:157–167

    Article  PubMed  CAS  Google Scholar 

  • Bourhis JM, Canard B, Longhi S (2005a) Désordre structural au sein du complexe réplicatif du virus de la rougeole: implications fonctionnelles. Virologie 9:367–383

    Google Scholar 

  • Bourhis JM, Receveur-Bréchot V, Oglesbee M, Zhang X, Buccellato M, Darbon H, Canard B,Finet S, Longhi S (2005b) The intrinsically disordered C-terminal domain of the measles virus nucleoprotein interacts with the C-terminal domain of the phosphoprotein via two distinct sites and remains predominantly unfolded. Protein Sci 14:1975–1992

    Article  CAS  Google Scholar 

  • Bourhis JM, Canard B, Longhi S (2006) Structural disorder within the replicative complex of measles virus: functional implications. Virology 344:94–110

    Article  PubMed  CAS  Google Scholar 

  • Bourhis J, Canard B, Longhi S (2007) Predicting protein disorder and induced folding: from theoretical principles to practical applications. Curr Protein Peptide Sci 8:135–149

    Article  CAS  Google Scholar 

  • Buchholz CJ, Spehner D, Drillien R, Neubert WJ, Homann HE (1993) The conserved N-terminal region of Sendai virus nucleocapsid protein NP is required for nucleocapsid assembly. J Virol 67:5803–5812

    PubMed  CAS  Google Scholar 

  • Buchholz CJ, Retzler C, Homann HE, Neubert WJ (1994) The carboxy-terminal domain of Sendai virus nucleocapsid protein is involved in complex formation between phosphoprotein and nucleocapsid- like particles. Virology 204:770–776

    Article  PubMed  CAS  Google Scholar 

  • Carsillo T, Carsillo M, Niewiesk S, Vasconcelos D, Oglesbee M (2004) Hyperthermic pre-conditioning promotes measles virus clearance from brain in a mouse model of persistent infection. Brain Res 1004:73–82

    Article  PubMed  CAS  Google Scholar 

  • Chen JW, Romero P, Uversky VN, Dunker AK (2006a) Conservation of intrinsic disorder in protein domains and families: I. A database of conserved predicted disordered regions. J Proteome Res 5:879–887

    Article  CAS  Google Scholar 

  • Chen JW, Romero P, Uversky VN, Dunker AK (2006b) Conservation of intrinsic disorder in protein domains and families: II. functions of conserved disorder. J Proteome Res 5: 888–898

    Article  CAS  Google Scholar 

  • Chen M, Cortay JC, Gerlier D (2003) Measles virus protein interactions in yeast: new findings and caveats. Virus Res 98:123–129

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Legall T, Oldfield CJ, Mueller JP, Van YY, Romero P, Cortese MS, Uversky VN, Dunker AK (2006) Rational drug design via intrinsically disordered protein. Trends Biotechnol 24:435–442

    Article  PubMed  CAS  Google Scholar 

  • Coronel EC, Takimoto T, Murti KG, Varich N, Portner A (2001) Nucleocapsid incorporation into parainfluenza virus is regulated by specific interaction with matrix protein. J Virol 75:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Curran JA, Kolakofsky D (1991) Rescue of a Sendai virus DI genome by other parainfluenza viruses: implications for genome replication. Virology 182:168–176

    Article  PubMed  CAS  Google Scholar 

  • Curran J, Kolakofsky D (1999) Replication of paramyxoviruses. Adv Virus Res 54:403–422

    Article  PubMed  CAS  Google Scholar 

  • Curran J, Homann H, Buchholz C, Rochat S, Neubert W, Kolakofsky D (1993) The hypervariable C-terminal tail of the Sendai paramyxovirus nucleocapsid protein is required for template function but not for RNA encapsidation. J. Virol 67:4358–4364

    PubMed  CAS  Google Scholar 

  • Curran J, Pelet T, Kolakofsky D (1994) An acidic activation-like domain of the Sendai virus P protein is required for RNA synthesis and encapsidation. Virology 202:875–884

    Article  PubMed  CAS  Google Scholar 

  • Curran J, Marq JB, Kolakofsky D (1995) An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication. J. Virol 69:849–855

    PubMed  CAS  Google Scholar 

  • De BP, Banerjee AK (1999) Involvement of actin microfilaments in the transcription/replication of human parainfluenza virus type 3: possible role of actin in other viruses. Microsc Res Tech 47:114–123

    Article  PubMed  CAS  Google Scholar 

  • Dunker AK, Obradovic Z (2001) The protein trinity——linking function and disorder. Nat Biotechnol 19:805–806

    Article  PubMed  CAS  Google Scholar 

  • Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 3:473–484

    Google Scholar 

  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW,Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    Article  PubMed  CAS  Google Scholar 

  • Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Article  PubMed  CAS  Google Scholar 

  • Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. FEBS J 272:5129–5148

    Article  PubMed  CAS  Google Scholar 

  • Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12:54–60

    Article  PubMed  CAS  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  PubMed  CAS  Google Scholar 

  • Egelman EH, Wu SS, Amrein M, Portner A, Murti G (1989) The Sendai virus nucleocapsid exists in at least four different helical states. J Virol 63:2233–2243

    PubMed  CAS  Google Scholar 

  • Fearns R, Collins PL (1999) Role of the M2–1 transcription antitermination protein of respiratory syncytial virus in sequential transcription. J Virol 73:5852–5864

    PubMed  CAS  Google Scholar 

  • Feix JB, Klug CS (1998) Site-directed spin-labeling of membrane proteins and peptide-membrane interactions. In: Berliner L (ed) Biological magnetic resonance. Plenum Press, New York,pp 21–281

    Google Scholar 

  • Ferron F, Longhi S, Henrissat B, Canard B (2002) Viral RNA-polymerases——a predicted 2'-O-ribose methyltransferase domain shared by all Mononegavirales. Trends Biochem Sci 27:222–224

    Article  PubMed  CAS  Google Scholar 

  • Ferron F, Longhi S, Canard B, Karlin D (2006) A practical overview of protein disorder prediction methods. Proteins 65:1–14

    Article  PubMed  CAS  Google Scholar 

  • Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15:35–41

    Article  PubMed  CAS  Google Scholar 

  • Flamand A, Raux H, Gaudin Y, Ruigrok RW (1993) Mechanisms of rabies virus neutralization.Virology 194:302–313

    Article  PubMed  CAS  Google Scholar 

  • Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol 338:1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Garner E, Romero P, Dunker AK, Brown C, Obradovic Z (1999) Predicting binding regions within disordered proteins. Genome Inform Ser Workshop Genome Inform 10:41–50

    PubMed  CAS  Google Scholar 

  • Giraudon P, Jacquier MF, Wild TF (1988) Antigenic analysis of African measles virus field isolates: identification and localisation of one conserved and two variable epitope sites on the NP protein. Virus Res 10:137–152

    Article  PubMed  CAS  Google Scholar 

  • Gombart AF, Hirano A, Wong TC (1993) Conformational maturation of measles virus nucleocap-sid protein. J Virol 67:4133–4141

    PubMed  CAS  Google Scholar 

  • Green TJ, Zhang X, Wertz GW, Luo M (2006) Structure of the vesicular stomatitis virus nucleo-protein-RNA complex. Science 313:357–360

    Article  PubMed  CAS  Google Scholar 

  • Gunasekaran K, Tsai CJ, Kumar S, Zanuy D, Nussinov R (2003) Extended disordered proteins: targeting function with less scaffold. Trends Biochem Sci 28:81–85

    Article  PubMed  CAS  Google Scholar 

  • Gupta AK, Shaji D, Banerjee AK (2003) Identification of a novel tripartite complex involved in replication of vesicular stomatitis virus genome RNA. J Virol 77:732–738

    Article  PubMed  CAS  Google Scholar 

  • Hartlieb B, Modrof J, Muhlberger E, Klenk HD, Becker S (2003) Oligomerization of Ebola virus VP30 is essential for viral transcription and can be inhibited by a synthetic peptide. J Biol Chem 278:41830–41806

    Article  PubMed  CAS  Google Scholar 

  • Harty RN, Palese P (1995) Measles virus phosphoprotein (P) requires the NH2- and COOH-ter-minal domains for interactions with the nucleoprotein (N) but only the COOH terminus for interactions with itself. J Gen Virol 76:2863–2867

    Article  PubMed  CAS  Google Scholar 

  • Heggeness MH, Scheid A, Choppin PW (1980) Conformation of the helical nucleocapsids of par-amyxoviruses and vesicular stomatitis virus: reversible coiling and uncoiling induced bychanges in salt concentration. Proc Natl Acad Sci U S A 77:2631-2635

    Article  PubMed  CAS  Google Scholar 

  • Heggeness MH, Scheid A, Choppin PW (1981) The relationship of conformational changes in the Sendai virus nucleocapsid to proteolytic cleavage of the NP polypeptide. Virology114:555–562

    Article  PubMed  CAS  Google Scholar 

  • Horikami SM, Moyer SA (1995) Structure, transcription, and replication of measles virus. Curr Top Microbiol Immunol 191:35–50

    PubMed  CAS  Google Scholar 

  • Hubbell WL, Gross A, Langen R, Lietzow MA (1998) Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 8: 649–656

    Article  PubMed  CAS  Google Scholar 

  • Huber M, Cattaneo R, Spielhofer P, Orvell C, Norrby E, Messerli M, Perriard JC, Billeter MA (1991) Measles virus phosphoprotein retains the nucleocapsid protein in the cytoplasm.Virology 185:299–308

    Article  PubMed  CAS  Google Scholar 

  • Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584

    Article  PubMed  CAS  Google Scholar 

  • Iseni F, Baudin F, Blondel D, Ruigrok RW (2000) Structure of the RNA inside the vesicular stomatitis virus nucleocapsid. Rna 6:270–281

    Article  PubMed  CAS  Google Scholar 

  • Johansson K, Bourhis JM, Campanacci V, Cambillau C, Canard B, Longhi S (2003) Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein. J Biol Chem 278:44567–44573

    Article  PubMed  CAS  Google Scholar 

  • Karlin D, Longhi S, Canard B (2002a) Substitution of two residues in the measles virus nucleo-protein results in an impaired self-association. Virology 302:420–432

    Article  CAS  Google Scholar 

  • Karlin D, Longhi S, Receveur V, Canard B (2002b) The N-terminal domain of the phosphoprotein of morbilliviruses belongs to the natively unfolded class of proteins. Virology 296:251–262

    Article  CAS  Google Scholar 

  • Karlin D, Ferron F, Canard B, Longhi S (2003) Structural disorder and modular organization in Paramyxovirinae N and P. J Gen Virol 84:3239–3252

    Article  PubMed  CAS  Google Scholar 

  • Kingston RL, Hamel DJ, Gay LS, Dahlquist FW, Matthews BW (2004a) Structural basis for the attachment of a paramyxoviral polymerase to its template. Proc Natl Acad Sci U S A 101:8301–8306

    Article  CAS  Google Scholar 

  • Kingston RL, Walter AB, Gay LS (2004b) Characterization of nucleocapsid binding by the measles and the mumps virus phosphoprotein. J Virol 78:8615–8629

    Article  Google Scholar 

  • Kolakofsky D, Roux L, Garcin D, Ruigrok RW (2005) Paramyxovirus mRNA editing, the “rule of six” and error catastrophe: a hypothesis. J Gen Virol 86:1869–1877

    Article  PubMed  CAS  Google Scholar 

  • Kouznetzoff A, Buckle M, Tordo N (1998) Identification of a region of the rabies virus N protein involved in direct binding to the viral RNA. J Gen Virol 79:1005–1013

    PubMed  CAS  Google Scholar 

  • Lacy ER, Filippov I, Lewis WS, Otieno S, Xiao L, Weiss S, Hengst L, Kriwacki RW (2004) p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat Struct Mol Biol 11:358–364

    Article  PubMed  CAS  Google Scholar 

  • Laine D, Trescol-Biémont M, Longhi S, Libeau G, Marie J, Vidalain P, Azocar O, Diallo A,Canard B, Rabourdin-Combe C, Valentin H (2003) Measles virus nucleoprotein binds to a novel cell surface receptor distinct from FcgRII via its C-terminal domain: role in MV-induced immunosuppression. J Virol 77:11332–11346

    Article  PubMed  CAS  Google Scholar 

  • Laine D, Bourhis J, Longhi S, Flacher M, Cassard L, Canard B, Sautès-Fridman C, Rabourdin-Combe C, Valentin H (2005) Measles virus nucleoprotein induces cell proliferation arrest and apoptosis through NTAIL/NR and NCORE/Fc?RIIB1 interactions, respectively. J Gen Virol 86:1771–1784

    Article  PubMed  CAS  Google Scholar 

  • Lamb RA, Kolakofsky D (2001)Paramyxoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology, 4th edn., Lippincott-Raven, Philadelphia,pp 1305–1340

    Google Scholar 

  • Li J, Wang JT, Whelan SP (2006) A unique strategy for mRNA cap methylation used by vesicular stomatitis virus. Proc Natl Acad Sci U S A 103:8493–8498

    Article  PubMed  CAS  Google Scholar 

  • Lieutaud P, Canard B, Longhi S (2008) MeDor: a metaserver for predicting protein disorder. BMC Genomics 9(Suppl 2):S25

    Article  PubMed  Google Scholar 

  • Liston P, Batal R, DiFlumeri C, Briedis DJ (1997) Protein interaction domains of the measles virus nucleocapsid protein (NP). Arch Virol 142:305–321

    Article  PubMed  CAS  Google Scholar 

  • Longhi S, Canard B (1999) Mécanismes de transcription et de réplication desParamyxoviridae.Virologie 3:227–240

    Google Scholar 

  • Longhi S, Receveur-Brechot V, Karlin D, Johansson K, Darbon H, Bhella D, Yeo R, Finet S,Canard B (2003) The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278:18638–18648

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Green TJ, Zhang X, Tsao J, Qiu S (2007) Conserved characteristics of the rhabdovirus nucleoprotein. Virus Res 129:246–251

    Article  PubMed  CAS  Google Scholar 

  • Marion D, Tarbouriech N, Ruigrok RW, Burmeister WP, Blanchard L (2001) Assignment of the 1H, 15N and 13C resonances of the nucleocapsid- binding domain of the Sendai virus phos-phoprotein. J Biomol NMR 21:75–76

    Article  PubMed  CAS  Google Scholar 

  • Mavrakis M, Kolesnikova L, Schoehn G, Becker S, Ruigrok RW (2002) Morphology of Marburg virus NP-RNA. Virology 296:300–307

    Article  PubMed  CAS  Google Scholar 

  • Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, Dunker AK, Uversky VN (2006) Analysis of molecular recognition features (MoRFs). J Mol Biol 362:1043–1059

    Article  PubMed  CAS  Google Scholar 

  • Morin B, Bourhis JM, Belle V, Woudstra M, Carrière F, BGuigliarelli B, Fournel A, Longhi S(2006) Assessing induced folding of an intrinsically disordered protein by site-directed spin-labeling EPR spectroscopy. J Phys Chem B 110(41) 20596–20608

    Article  PubMed  CAS  Google Scholar 

  • Moyer SA, Baker SC, Horikami SM (1990) Host cell proteins required for measles virus reproduction. J Gen Virol 71:775–783

    Article  PubMed  CAS  Google Scholar 

  • Myers TM, Pieters A, Moyer SA (1997) A highly conserved region of the Sendai virus nucleo-capsid protein contributes to the NP-NP binding domain. Virology 229:322–335

    Article  PubMed  CAS  Google Scholar 

  • Myers TM, Smallwood S, Moyer SA (1999) Identification of nucleocapsid protein residues required for Sendai virus nucleocapsid formation and genome replication. J Gen Virol 80:1383–1391

    PubMed  CAS  Google Scholar 

  • Ogino T, Kobayashi M, Iwama M, Mizumoto K (2005) Sendai virus RNA-dependent RNA polymer-ase L protein catalyzes cap methylation of virus-specific mRNA. J Biol Chem 280:4429–4435

    Article  PubMed  CAS  Google Scholar 

  • Oglesbee M, Ringler S, Krakowka S (1990) Interaction of canine distemper virus nucleocapsid variants with 70 K heat-shock proteins. J Gen Virol 71:1585–1590

    Article  PubMed  CAS  Google Scholar 

  • Oglesbee M, Tatalick L, Rice J, Krakowka S (1989) Isolation and characterization of canine distemper virus nucleocapsid variants. J Gen Virol 70:2409–2419

    Article  PubMed  CAS  Google Scholar 

  • Oglesbee MJ, Kenney H, Kenney T, Krakowka S (1993) Enhanced production of morbillivirus gene-specific RNAs following induction of the cellular stress response in stable persistent infection. Virology 192:556–567

    Article  PubMed  CAS  Google Scholar 

  • Oglesbee MJ, Pratt M, Carsillo T (2002) Role for heat shock proteins in the immune response to measles virus infection. Viral Immunol 15:399–416

    Article  PubMed  CAS  Google Scholar 

  • Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44:12454–12470

    Article  PubMed  CAS  Google Scholar 

  • Plumet S, Duprex WP, Gerlier D (2005) Dynamics of viral RNA synthesis during measles virus infection. J Virol 79:6900–6908

    Article  PubMed  CAS  Google Scholar 

  • Rahaman A, Srinivasan N, Shamala N, Shaila MS (2004) Phosphoprotein of the rinderpest virus forms a tetramer through a coiled coil region important for biological function. A structural insight. J Biol Chem 279:23606–23614

    Article  PubMed  CAS  Google Scholar 

  • Receveur-Bréchot V, Bourhis JM, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins 62:24–45

    Article  PubMed  CAS  Google Scholar 

  • Robbins SJ, Bussell RH (1979) Structural phosphoproteins associated with purified measles viri-ons and cytoplasmic nucleocapsids. Intervirology 12:96–102

    Article  PubMed  CAS  Google Scholar 

  • Robbins SJ, Bussell RH, Rapp F (1980) Isolation and partial characterization of two forms of cytoplasmic nucleocapsids from measles virus-infected cells. J Gen Virol 47:301–310

    Article  PubMed  CAS  Google Scholar 

  • Roux L (2005) Dans le génome des Paramyxovirinae, les promoteurs et leurs activités sont façon-nés par la “règle de six”. Virologie 9:19–34

    Google Scholar 

  • Ryan KW, Portner A (1990) Separate domains of Sendai virus P protein are required for binding to viral nucleocapsids. Virology 174:515–521

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Masuda M, Miura R, Yoneda M, Kai C (2006) Morbillivirus nucleoprotein possesses a novel nuclear localization signal and a CRM1-independent nuclear export signal. Virology 352:121–130

    Article  PubMed  CAS  Google Scholar 

  • Schoehn G, Iseni F, Mavrakis M, Blondel D, Ruigrok RW (2001) Structure of recombinant rabies virus nucleoprotein-RNA complex and identification of the phosphoprotein binding site. J Virol 75:490–498

    Article  PubMed  CAS  Google Scholar 

  • Schoehn G, Mavrakis M, Albertini A, Wade R, Hoenger A, Ruigrok RW (2004) The 12 A structure of trypsin-treated measles virus N-RNA. J Mol Biol 339:301–312

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker BA, Portman JJ, Wolynes PG (2000) Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci U S A 97(16) 8868–8873

    Article  PubMed  CAS  Google Scholar 

  • Sivakolundu SG, Bashford D, Kriwacki RW (2005) Disordered p27Kip1 exhibits intrinsic structure resembling the Cdk2/cyclin A-bound conformation. J Mol Biol 353:1118–1128

    Article  PubMed  CAS  Google Scholar 

  • Smallwood S, Ryan KW, Moyer SA (1994) Deletion analysis defines a carboxyl-proximal region of Sendai virus P protein that binds to the polymerase L protein. Virology 202:154–163

    Article  PubMed  CAS  Google Scholar 

  • Spehner D, Kirn A, Drillien R (1991) Assembly of nucleocapsid-like structures in animal cells infected with a vaccinia virus recombinant encoding the measles virus nucleoprotein. J Virol 65:6296–6300

    PubMed  CAS  Google Scholar 

  • Spehner D, Drillien R, Howley PM (1997) The assembly of the measles virus nucleoprotein into nucleocapsid-like particles is modulated by the phosphoprotein. Virology 232:260–268

    Article  PubMed  CAS  Google Scholar 

  • Stallcup KC, Wechsler SL, Fields BN (1979) Purification of measles virus and characterization of subviral components. J Virol 30:166–176

    PubMed  CAS  Google Scholar 

  • Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025

    Article  PubMed  CAS  Google Scholar 

  • Sweetman DA, Miskin J, Baron MD (2001) Rinderpest virus C and V proteins interact with the major (L) component of the viral polymerase. Virology 281:193–204

    Article  PubMed  CAS  Google Scholar 

  • Tapparel C, Maurice D, Roux L (1998) The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template regions: a motif (GNNNNN)3 is essential for replication. J Virol 72:3117–3128

    PubMed  CAS  Google Scholar 

  • Tarbouriech N, Curran J, Ruigrok RW, Burmeister WP (2000) Tetrameric coiled coil domain of Sendai virus phosphoprotein. Nat Struct Biol 7:777–781

    Article  PubMed  CAS  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  PubMed  CAS  Google Scholar 

  • Tompa P (2003) The functional benefits of disorder. J Mol Structure (Theochem) 666–667:361–371

    Article  CAS  Google Scholar 

  • Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579:3346–3354

    Article  PubMed  CAS  Google Scholar 

  • Tran TL, Castagne N, Bhella D, Varela PF, Bernard J, Chilmonczyk S, Berkenkamp S, Benhamo V, Grznarova K, Grosclaude J, Nespoulos C, Rey FA, Eleouet JF (2007) The nine C-terminal amino acids of the respiratory syncytial virus protein P are necessary and sufficient for binding to ribonucleoprotein complexes in which six ribonucleotides are contacted per N protein pro-tomer. J Gen Virol 88:196–206

    Article  PubMed  CAS  Google Scholar 

  • Tsai CD, Ma B, Kumar S, Wolfson H, Nussinov R (2001a) Protein folding: binding of conforma-tionally fluctuating building blocks via population selection. Crit Rev Biochem Mol Biol 36:399–433

    Article  CAS  Google Scholar 

  • Tsai CJ, Ma B, Sham YY, Kumar S, Nussinov R (2001b) Structured disorder and conformational selection. Proteins 44:418–427

    Article  CAS  Google Scholar 

  • Tuckis J, Smallwood S, Feller JA, Moyer SA (2002) The C-terminal 88 amino acids of the Sendai virus P protein have multiple functions separable by mutation. J Virol 76:68–77

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN (2002a) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756

    Article  CAS  Google Scholar 

  • Uversky VN (2002b) What does it mean to be natively unfolded? Eur J Biochem 269:2–12

    Article  CAS  Google Scholar 

  • Uversky VN, Li J, Souillac P, Jakes R, Goedert M, Fink AL (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta-and gamma-synucleins. J Biol Chem 277:11970–11978

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384

    Article  PubMed  CAS  Google Scholar 

  • Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, Dunker AK (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 6:2351–2366

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos DY, Cai XH, Oglesbee MJ (1998a) Constitutive overexpression of the major induci-ble 70 kDa heat shock protein mediates large plaque formation by measles virus. J Gen Virol 79:2239–2247

    CAS  Google Scholar 

  • Vasconcelos D, Norrby E, Oglesbee M (1998b) The cellular stress response increases measles virus-induced cytopathic effect. J Gen Virol 79:1769–1773

    CAS  Google Scholar 

  • Vincent S, Tigaud I, Schneider H, Buchholz CJ, Yanagi Y, Gerlier D (2002) Restriction of measles virus RNA synthesis by a mouse host cell line: trans-complementation by polymerase components or a human cellular factor(s). J Virol 76:6121–6130

    Article  PubMed  CAS  Google Scholar 

  • Vulliemoz D, Roux L (2001) “Rule of six” how does the Sendai virus RNA polymerase keep count? J Virol 75:4506–4518

    Article  PubMed  CAS  Google Scholar 

  • Warnes A, Fooks AR, Dowsett AB, Wilkinson GW, Stephenson JR (1995) Expression of the measles virus nucleoprotein gene in Escherichia coli and assembly of nucleocapsid-like structures. Gene 160:173–178

    Article  PubMed  CAS  Google Scholar 

  • Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Glendening C, Linke H, Parks CL, Brooks C, Udem SA, Oglesbee M (2002) Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. J Virol 76:8737–8746

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Bourhis JM, Longhi S, Carsillo T, Buccellato M, Morin B, Canard B, Oglesbee M (2005) Hsp72 recognizes a P binding motif in the measles virus N protein C-terminus. Virology 337:162–174

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Longhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Longhi, S. (2009). Nucleocapsid Structure and Function. In: Griffin, D.E., Oldstone, M.B.A. (eds) Measles. Current Topics in Microbiology and Immunology, vol 329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70523-9_6

Download citation

Publish with us

Policies and ethics