Skip to main content

Frontiers in Computational Geophysics: Simulations of Mantle Circulation, Plate Tectonics and Seismic Wave Propagation

  • Chapter
100 Volumes of ‘Notes on Numerical Fluid Mechanics’

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 100))

  • 4448 Accesses

Summary

Recent progress in geophysical modelling of global plate tectonic, mantle convection and seismic wave propagation problems is reviewed, while paying particular attention to novel adjoint methods for the efficient inversion of seismic and tectonic data. Observed is that the continuing growth in high performance and cluster computing promises the crossing of long standing barriers in the simulation of first-order geophysical phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benzi, M., Golub, G., Liessen, J.: Numerical solution of saddle point problems. Acta Numerica 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bercovici, D.: A source-sink model of the generation of plate tectonics from non-newtonian mantle flow. J. Geophys. Res. 100, 2013–2030 (1995)

    Article  Google Scholar 

  3. Bird, P.: Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults. J. Geophys. Res. 103, 10115–10129 (1998)

    Article  Google Scholar 

  4. Bunge, H.-P., Grand, S.P.: Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature 405, 337–340 (2000)

    Article  Google Scholar 

  5. Bunge, H.-P., Hagelberg, C.R., Travis, B.J.: Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. J. Int. 152(2), 280–301 (2003)

    Article  Google Scholar 

  6. Bunge, H.-P., Richards, M.A., Baumgardner, J.R.: The effect of depth dependent viscosity on the planform of mantle convection. Nature 379, 436–438 (1996)

    Article  Google Scholar 

  7. Bunge, H.-P., Richards, M.A., Baumgardner, J.R.: A sensitivity study of 3-D spherical mantle convection at 108 Rayleigh number: Effects of depth dependent viscosity, heating mode and an endothermic phase change. J. Geophys. Res. 102, 11991–12007 (1997)

    Article  Google Scholar 

  8. Bunge, H.-P., Richards, M.A., Lithgow-Bertelloni, C., Baumgardner, J.R., Grand, S., Romanowicz, B.: Time scales and heterogeneous structure in geodynamic earth models. Science 280, 91–95 (1998)

    Article  Google Scholar 

  9. Davies, G.F.: Mantle convection model with a dynamic plate-topography, heat-flow and gravity anomalies. Geophys. J. Int. 98, 461–464 (1989)

    Article  Google Scholar 

  10. Davies, G.F.: Dynamic earth: plates, plumes, and mantle convection. Cambridge Atmospheric and Space Science Series. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  11. Dixon, T.H.: An introduction to the Global Positioning System and some geological applications. Reviews of Geophysics 29, 249–276 (1991)

    Article  Google Scholar 

  12. Fichtner, A., Bunge, H.-P., Igel, H.: The adjoint method in seismology: I - Theory. Physics of The Earth and Planetary Interiors 157(1-2), 86–104 (2006)

    Article  Google Scholar 

  13. Fichtner, A., Bunge, P., Igel, H.: The adjoint method in seismology: II - Applications: traveltimes and sensitivity functionals. Phys. Earth Planet. Int. 157(1-2), 105–123 (2006)

    Article  Google Scholar 

  14. Gable, C.W., OConnell, R.J., Travis, B.J.: Convection in 3 dimensions with surface plates generation of toroidal flow. J. Geophys. Res. 96, 8391–8405 (1991)

    Article  Google Scholar 

  15. Glatzmaier, G.A.: Geodynamo simulations - how realistic are they? Annual Review of Earth and Planetary Sciences 30, 237–257 (2002)

    Article  Google Scholar 

  16. Heidbach, O., Iaffaldano, G., Bunge, H.-P.: Topography growth drives stress rotations in the central Andes: 3 Observations and models. Geophysical Research Letters 35 (in press, 2008)

    Google Scholar 

  17. Heidbach, O., Reinecker, J., Tingay, M., Müller, B., Sperner, B., Fuchs, K., Wenzel, F.: Plate boundary forces are not enough: Second- and third-order stress patterns highlighted in the world stress map database. Tectonics 26 (2007)

    Google Scholar 

  18. Hollerbach, R.: On the theory of the geodynamo. Physics of the Earth and Planetary Interiors 98, 163–185 (1996)

    Article  Google Scholar 

  19. Iaffaldano, G., Bunge, H.-P., Buecker, M.: Mountain belt growth inferred from histories of past plate convergence: A new tectonic inverse problem. Earth Planet. Sci. Lett. 260, 516–523 (2007)

    Article  Google Scholar 

  20. Iaffaldano, G., Bunge, H.-P., Dixon, T.H.: Feedback between mountain belt growth and plate convergence. Geology 34, 893–896 (2006)

    Article  Google Scholar 

  21. Igel, H., et al.: 3D Seismic Wave Propagation on a Global and Regional Scale: Earthquakes, Fault Zones, Volcanoes. In: High Performance Computing in Science and Engineering. Springer, Heidelberg (2002) ISBN 3-540-00474-2

    Google Scholar 

  22. Igel, H., Weber, M.: SH-wave propagation in the whole mantle using high-order finite differences. Geophys. Res. Lett. 22(6), 731–734 (1995)

    Article  Google Scholar 

  23. Ismail-Zadeh, A., Schubert, G., Tsepelev, I., Korotkii, A.: Inverse problem of thermal convection: numerical approach and application to mantle plume restoration. Physics of the Earth and Planetary Interiors 145, 99–114 (2004)

    Article  Google Scholar 

  24. Kirby, S.H.: Rheology of the lithosphere. Rev. Geophys. 21, 1458–1487 (1983)

    Article  Google Scholar 

  25. Komatitsch, D., Barnes, C., Tromp, J.: Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics 65, 1251–1260 (2000)

    Article  Google Scholar 

  26. Kong, X., Bird, P.: Shells: A thin-shell program for modeling neotectonics of regional or global lithosphere with faults. J. Geophys. Res. 100, 22129–22132 (1995)

    Article  Google Scholar 

  27. McNamara, A.K., Zhong, S.: Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437(7062), 1136 (2005)

    Article  Google Scholar 

  28. Moresi, L., Solomatov, V.: Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the earth and venus. Geophys. J. Int. 133, 669–682 (1998)

    Article  Google Scholar 

  29. Oeser, J., Bunge, H.-P., Mohr, M.: Cluster Design in the Earth Sciences: TETHYS. In: Gerndt, M., Kranzlmüller, D. (eds.) HPCC 2006. LNCS, vol. 4208, pp. 31–40. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Ricard, Y., Vigny, C.: Mantle dynamics with induced plate tectonics. J. Geophys. Res. 94, 17543–17559 (1989)

    Article  Google Scholar 

  31. Richards, M.A., Yang, W.S., Baumgardner, J.R., Bunge, H.P.: Role of a low-viscosity zone in stabilizing plate tectonics: Implications for comparative terrestrial planetology. Geochem. Geophys. Geosys. 2 (2001)

    Google Scholar 

  32. Richardson, R.M., Coblentz, D.D.: Stress modeling in the andes: Constraints on the south america intraplate stress magnitudes. J. Geophys. Res. 99, 22015–22025 (1994)

    Article  Google Scholar 

  33. Sigloch, K., McQuarrie, N., Nolet, G.: Two-stage subduction history under north america inferred from finite-frequency tomography. Nature Geoscience (2008) (in review)

    Google Scholar 

  34. Song, T.R.A., Simons, M.: Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science 301, 630–633 (2003)

    Article  Google Scholar 

  35. Stemmer, K., Harder, H., Hansen, U.: A new method to simulate convection with strongly temperature- and pressure-dependent viscosity in a spherical shell: Applications to the earth’s mantle. Physics of the Earth and Planetary Interiors 157, 223–249 (2006)

    Article  Google Scholar 

  36. Tackley, P.J.: Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations, part 1: Pseudoplastic yielding. Geochem. Geophys. Geosys. 1 (2000)

    Google Scholar 

  37. Tackley, P.J., Stevenson, D.J., Glatzmaier, G.A., Schubert, G.: Effects of an endothermic phase transition at 670 km depth on a spherical model of convection in Earth’s mantle. Nature 361, 699–704 (1993)

    Article  Google Scholar 

  38. Tarantola, A.: 3-dimensional inversion without blocks. Geophysical Journal of the Royal Astronomical Society 76, 299–306 (1984)

    MATH  Google Scholar 

  39. Tarantola, A.: Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation. Pure and Applied Geophysics 128, 365–399 (1988)

    Article  Google Scholar 

  40. Tromp, J., Tape, C., Liu, Q.Y.: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International 160, 195–216 (2005)

    Article  Google Scholar 

  41. Zhong, S., Zuber, M.T., Moresi, L., Gurnis, M.: Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. Journal of Geophysical Research 105, 11063–11082 (2000)

    Article  Google Scholar 

  42. Zhong, S.J., Gurnis, M.: Mantle convection with plates and mobile, faulted plate margins. Science 267, 838–843 (1995)

    Article  Google Scholar 

  43. Zhong, S.J., Gurnis, M., Moresi, L.: The role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models. J. Geophys. Res. 103, 15255–15268 (1998)

    Article  Google Scholar 

  44. Zoback, M.L.: First and second order patterns of stress in the lithosphere: The world stress map project. J. Geophys. Res. 97, 11703–11728 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oeser, J., Bunge, H.P., Mohr, M., Igel, H. (2009). Frontiers in Computational Geophysics: Simulations of Mantle Circulation, Plate Tectonics and Seismic Wave Propagation. In: Hirschel, E.H., Krause, E. (eds) 100 Volumes of ‘Notes on Numerical Fluid Mechanics’. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70805-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70805-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70804-9

  • Online ISBN: 978-3-540-70805-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics