Skip to main content

Structure and Gene-Silencing Mechanisms of Small Noncoding RNAs

  • Chapter
Non-Protein Coding RNAs

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 13))

  • 1236 Accesses

Abstract

Small (19–31-nucleotides) noncoding RNAs were identified in the past 10 years for their distinct function in gene silencing. The best known gene-silencing phenomenon, RNA interference (RNAi), is triggered in a sequence-specific manner by endogenously produced or exogenously introduced small doubled-stranded RNAs. As knowledge of the structure and function of the RNAi machinery has expanded, this phenomenon has become a powerful tool for biochemical research; it has enormous potential for therapeutics. This chapter summarizes significant aspects of three major classes of small noncoding, regulatory RNAs: small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). Here, we focus on the biogenesis of these small RNAs, their structural features and coupled effectors as well as the mechanisms of each small regulatory RNA pathway which reveal fascinating ways by which gene silencing is controlled and fine-tuned at an epigenetic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amarzguioui M, Prydz H (2004) An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 316:1050–1058

    Article  Google Scholar 

  • Amarzguioui M, Holen T, Babaie E et al. (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31:589–595

    Article  Google Scholar 

  • Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130:101–112

    Article  Google Scholar 

  • Aravin AA, Naumova NM, Tulin AV et al. (2001) Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 11:1017–1027

    Article  Google Scholar 

  • Aravin AA, Sachidanandam R, Girard A et al. (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–747

    Article  ADS  Google Scholar 

  • Bagga S, Bracht J, Hunter S et al. (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563

    Article  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Doerks T et al. (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898

    Article  Google Scholar 

  • Bhattacharyya SN, Habermacher R, Martine U et al. (2006) Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125:1111–1124

    Article  Google Scholar 

  • Birmingham A, Anderson E, Sullivan K et al. (2007) A protocol for designing siRNAs with high functionality and specificity. Nat Protoc 2:2068–2078

    Article  Google Scholar 

  • Bohnsack MT, Regener K, Schwappach B et al. (2002) Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J 21:6205–6215

    Article  Google Scholar 

  • Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191

    Article  Google Scholar 

  • Braasch DA, Jensen S, Liu Y et al. (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42:7967–7975

    Article  Google Scholar 

  • Brennecke J, Stark A, Russell RB et al. (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  Google Scholar 

  • Brennecke J, Aravin AA, Stark A et al. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    Article  Google Scholar 

  • Brown KM, Chu CY, Rana TM (2005) Target accessibility dictates the potency of human RISC. Nat Struct Mol Biol 12:469–470

    Article  Google Scholar 

  • Carmell MA, Hannon GJ (2004) RNase III enzymes and the initiation of gene silencing. Nat Struct Mol Biol 11:214–218

    Article  Google Scholar 

  • Carmell MA, Girard A, van de Kant HJ et al. (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12:503–514

    Article  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E et al. (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    Article  ADS  Google Scholar 

  • Chendrimada TP, Finn KJ, Ji X et al. (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447(7146):823–828

    Article  ADS  Google Scholar 

  • Chiu YL, Rana TM (2002) RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 10:549–561

    Article  Google Scholar 

  • Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9:1034–1048

    Article  Google Scholar 

  • Chu CY, Rana TM (2006) Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4:e210

    Article  Google Scholar 

  • Cox DN, Chao A, Baker J et al. (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12:3715–3727

    Article  Google Scholar 

  • Czauderna F, Fechtner M, Dames S et al. (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31:2705–2716

    Article  Google Scholar 

  • Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830

    Article  Google Scholar 

  • Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511

    Article  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  Google Scholar 

  • Enright AJ, John B, Gaul U et al. (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    Article  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Izaurralde E (2007a) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8:9–22

    Article  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Schweizer D et al. (2007b) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27:3970–3981

    Article  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al. (1998) Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  ADS  Google Scholar 

  • Förstemann K, Horwich MD, Wee L et al. (2007) Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by Dicer-1. Cell 130:287–297

    Article  Google Scholar 

  • Forstemann K, Tomari Y, Du T et al. (2005) Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3:e236

    Article  Google Scholar 

  • Grimson A, Farh KK, Johnston WK et al. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  Google Scholar 

  • Grun D, Wang YL, Langenberger D et al. (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1:e13

    Article  ADS  Google Scholar 

  • Gunawardane LS, Saito K, Nishida KM et al. (2007) A slicer-mediated mechanism for repeatassociated siRNA 5′ end formation in Drosophila. Science 315:1587–1590

    Article  ADS  Google Scholar 

  • Hartig J V, Tomari Y, Forstemann K (2007) piRNAs — the ancient hunters of genome invaders. Genes Dev 21:1707–1713

    Article  Google Scholar 

  • Horwich MD, Li C, Matranga C et al. (2007) The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 17:1265–1272

    Article  Google Scholar 

  • Houwing S, Kamminga LM, Berezikov E et al. (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129:69–82

    Article  Google Scholar 

  • Jackson AL, Burchard J, Leake D et al. (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12:1197–1205

    Article  Google Scholar 

  • Jakymiw A, Lian S, Eystathioy T et al. (2005) Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol 7:1267–1274

    Article  Google Scholar 

  • John B, Enright AJ, Aravin A et al. (2004) Human microRNA targets. PLoS Biol 2:e363

    Article  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  Google Scholar 

  • Kim DH, Behlke MA, Rose SD et al. (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226

    Article  Google Scholar 

  • Kiriakidou M, Nelson PT, Kouranov A et al. (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178

    Article  Google Scholar 

  • Kiriakidou M, Tan GS, Lamprinaki S et al. (2007) An mRNA m(7)G Cap Binding-like Motif within Human Ago2 Represses Translation. Cell 129:1141–1151

    Article  Google Scholar 

  • Kirino Y, Mourelatos Z (2007) Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nat Struct Mol Biol 14:347–348

    Article  Google Scholar 

  • Krek A, Grun D, Poy MN et al. (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  Google Scholar 

  • Kuramochi-Miyagawa S, Kimura T, Yomogida K et al. (2001) Two mouse piwi-related genes: miwi and mili. Mech Dev 108:121–133

    Article  Google Scholar 

  • Kuramochi-Miyagawa S, Kimura T, Ijiri TW et al. (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131:839–849

    Article  Google Scholar 

  • Lall S, Grun D, Krek A et al. (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16:460–471

    Article  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  Google Scholar 

  • Lee YS, Nakahara K, Pham JW et al. (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81

    Article  Google Scholar 

  • Lee Y, Hur I, Park SY et al. (2006) The role of PACT in the RNA silencing pathway. EMBO J 25:522–532

    Article  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW et al. (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  Google Scholar 

  • Liu J, Carmell MA, Rivas FV et al. (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  ADS  Google Scholar 

  • Liu J, Rivas FV, Wohlschlegel J et al. (2005a) A role for the P-body component GW182 in micro-RNA function. Nat Cell Biol 7:1261–1266

    Google Scholar 

  • Liu J, Valencia-Sanchez MA, Hannon GJ et al. (2005b) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723

    Article  Google Scholar 

  • Lund E, Guttinger S, Calado A et al. (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  ADS  Google Scholar 

  • Ma JB, Yuan YR, Meister G et al. (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434:666–670

    Article  ADS  Google Scholar 

  • Maroney PA, Yu Y, Fisher J et al. (2006) Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13:1102–1107

    Article  Google Scholar 

  • Martinez J, Tuschl T (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev 18:975–980

    Article  Google Scholar 

  • Mathonnet G, Fabian MR, Svitkin YV et al. (2007) MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317(5845):1764–1767

    Article  ADS  Google Scholar 

  • Matranga C, Tomari Y, Shin C et al. (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A et al. (2004) Human argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  Google Scholar 

  • Mello CC, Conte D (2004) Revealing the world of RNA interference. Nature 431:338–342

    Article  ADS  Google Scholar 

  • Mochizuki K, Fine NA, Fujisawa T et al. (2002) Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110:689–699

    Article  Google Scholar 

  • Morrissey DV, Lockridge JA, Shaw L et al. (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007

    Article  Google Scholar 

  • Nottrott S, Simard MJ, Richter JD (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13:1108–1114

    Article  Google Scholar 

  • O'Donnell KA, Boeke JD (2007) Mighty Piwis defend the germline against genome intruders. Cell 129:37–44

    Article  Google Scholar 

  • Ohara T, Sakaguchi Y, Suzuki T et al. (2007) The 3′ termini of mouse Piwi-interacting RNAs are 2′-O-methylated. Nat Struct Mol Biol 14:349–350

    Article  Google Scholar 

  • Okamura K, Ishizuka A, Siomi H et al. (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18:1655–1666

    Article  Google Scholar 

  • Okamura K, Hagen JW, Duan H et al. (2007) The Mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100

    Article  Google Scholar 

  • Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing inCaenorhabditis elegansby blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680

    Article  Google Scholar 

  • Pane A, Wehr K, Schupbach T (2007) zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev Cell 12:851–862

    Article  Google Scholar 

  • Peragine A, Yoshikawa M, Wu G et al. (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368–2379

    Article  Google Scholar 

  • Petersen CP, Bordeleau ME, Pelletier J et al. (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21:533–542

    Article  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG et al. (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309:1573–1576

    Article  ADS  Google Scholar 

  • Prakash TP, Allerson CR, Dande P et al. (2005) Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem 48:4247–4253

    Article  Google Scholar 

  • Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36

    Article  Google Scholar 

  • Rand TA, Petersen S, Du F et al. (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629

    Article  Google Scholar 

  • Rehmsmeier M, Steffen P, Hochsmann M et al. (2004) Fast and effective prediction of microRNA/ target duplexes. RNA 10:1507–1517

    Article  Google Scholar 

  • Rehwinkel J, Behm-Ansmant I, Gatfield D et al. (2005) A crucial role for GW182 and the DCP1: DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11:1640–1647

    Article  Google Scholar 

  • Reynolds A, Leake D, Boese Q et al. (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  Google Scholar 

  • Rivas FV, Tolia NH, Song JJ et al. (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12:340–349

    Article  Google Scholar 

  • Robb GB, Rana TM (2007) RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol Cell 26:523–537

    Article  Google Scholar 

  • Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    Article  ADS  Google Scholar 

  • Rusinov V, Baev V, Minkov IN et al. (2005) MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 33:W696–700

    Article  Google Scholar 

  • Saetrom O, Snove O, Jr., Saetrom P (2005) Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 11:995–1003

    Article  Google Scholar 

  • Saito K, Ishizuka A, Siomi H et al. (2005) Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol 3:e235

    Article  Google Scholar 

  • Saito K, Nishida KM, Mori T et al. (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20:2214–2222

    Article  Google Scholar 

  • Saito K, Sakaguchi Y, Suzuki T et al. (2007) Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev 21:1603–1608

    Article  Google Scholar 

  • Sarot E, Payen-Groschene G, Bucheton A et al. (2004) Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by theDrosophila melanogasterflamenco gene. Genetics 166:1313–1321

    Article  Google Scholar 

  • Schwarz DS, Hutvágner G, Du T et al. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  Google Scholar 

  • Schwarz DS, Hutvagner G, Haley B et al. (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell 10:537–548

    Article  Google Scholar 

  • Sen GL, Blau HM (2005) Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7:633–636

    Article  Google Scholar 

  • Siolas D, Lerner C, Burchard J et al. (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23:227–231

    Article  Google Scholar 

  • Taverna SD, Coyne RS, Allis CD (2002) Methylation of histone h3 at lysine 9 targets programmed DNA elimination in tetrahymena. Cell 110:701–711

    Article  Google Scholar 

  • Thermann R, Hentze MW (2007) Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447:875–878

    Article  ADS  Google Scholar 

  • Tolia NH, Joshua-Tor L (2007) Slicer and the argonautes. Nat Chem Biol 3:36–43

    Article  Google Scholar 

  • Tomari Y, Du T, Zamore PD (2007) Sorting of Drosophila small silencing RNAs. Cell 130:299–308

    Article  Google Scholar 

  • Ui-Tei K, Naito Y, Takahashi F et al. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948

    Article  Google Scholar 

  • Vagin V V, Sigova A, Li C et al. (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–324

    Article  ADS  Google Scholar 

  • Wakiyama M, Takimoto K, Ohara O et al. (2007) Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev 21:1857–1862

    Article  Google Scholar 

  • Wang B, Love TM, Call ME et al. (2006) Recapitulation of short RNA-directed translational gene silencing in vitro. Mol Cell 22:553–560

    Article  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103:4034–4039

    Article  ADS  Google Scholar 

  • Yi R, Qin Y, Macara IG et al. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  Google Scholar 

  • Yin H, Lin H (2007) An epigenetic activation role of Piwi and a Piwi-associated piRNA inDrosophila melanogaster. Nature 450:304–308

    Article  ADS  Google Scholar 

  • Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32:4776–4785

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq M. Rana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chu, CY., Rana, T.M. (2009). Structure and Gene-Silencing Mechanisms of Small Noncoding RNAs. In: Walter, N.G., Woodson, S.A., Batey, R.T. (eds) Non-Protein Coding RNAs. Springer Series in Biophysics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70840-7_17

Download citation

Publish with us

Policies and ethics