Skip to main content

Implication of Pyoverdines in the Interactions of Fluorescent Pseudomonads with Soil Microflora and Plant in the Rhizosphere

  • Chapter
Microbial Siderophores

Part of the book series: Soil Biology ((SOILBIOL,volume 12))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahl P, Voisard C, Défago G (1986) Iron bound-siderophores, cyanic acid, and antibiotics involved in the suppression of Thielaviopsis basicola of a Pseudomonas fluorescens strain. J Phytopathol 116:121–134

    CAS  Google Scholar 

  • Alabouvette C, Höper H, Lemanceau P, Steinberg C (1996) Soil suppressiveness to diseases induced by soil-borne plant pathogens. In: Stotzky G, Bollag J-M (eds) Soil biochemistry. Marcel Dekker, New York, pp 371–413

    Google Scholar 

  • Baker R, Elad Y, Sneh B (1986) Physical, biological and host factors in iron competition in soils. In: Swinburne TR (ed) Iron, siderophores and plant diseases. Plenum Press, New York London, pp 77–84

    Google Scholar 

  • Bakker PAHM, Lamers JG, Bakker AW, Marugg JD, Weisbeek PJ, Schippers B (1986) The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth J Plant Pathol 92:249–256

    Google Scholar 

  • Bakker PAHM, Bakker AW, Marugg JD, Weisbeek PJ, Schippers B (1987) Bioassay for studying the role of siderophores in potato growth stimulation by Pseudomonas spp in short potato rotations. Soil Biol Biochem 4:443–449

    Google Scholar 

  • Bakker PAHM, Ran LX, Pieterse CMJ, Van Loon LC (2003) Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can J Plant Pathol 25:5–9

    Google Scholar 

  • Barber DA, Lynch JM (1977) Microbial growth in the rhizosphere. Soil Biol Biochem 9:305–308

    CAS  Google Scholar 

  • Bar-Ness E, Chen Y, Hadar Y, Marschner H, Römheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241

    CAS  Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Romheld V, Marschner H (1992) Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol 100:451–456

    PubMed  CAS  Google Scholar 

  • Becker JO, Cook RJ (1988) Role of siderophores in suppression of Pythium species and production of increased-growth response of wheat by fluorescent pseudomonads. Phytopathology 78:778–782

    CAS  Google Scholar 

  • Becker JO, Hedges RW, Messens E (1985) Inhibitory effect of pseudobactin on the uptake of iron by higher plants. Appl Environ Microbiol 49:1090–1093

    PubMed  CAS  Google Scholar 

  • Bienfait HF (1985) Regulated redox process at the plasmalemma of plant root cells and their function in iron uptake. J Bioenerg Biomembr 17:73–83

    PubMed  CAS  Google Scholar 

  • Buyer JS, Leong J (1986) Iron transport-mediated antagonism between plant-growth promoting and plant-deleterious Pseudomonas strains. J Biol Chem 261:791–794

    PubMed  CAS  Google Scholar 

  • Buyer JS, Sikora LJ, Kratzke MG (1990) Monoclonal antibodies to ferric pseudobactin, the siderophore of plant growth-promoting Pseudomonas putida B10. Appl Environ Microbiol 56:419–424

    PubMed  CAS  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Höfte M (1996) Involvement of pyochelin and pyoverdine in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    PubMed  CAS  Google Scholar 

  • Chen L, Dick WA, Streeter JG, Hoitink HAJ (1998) Fe chelates from compost microorganisms improve Fe nutrition of soybean and oat. Plant Soil 139:139–147

    Google Scholar 

  • Cheng W, Zhang Q, Coleman, DC, Carroll CR, Hoffman CA (1996) Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol Biochem 28:1283–1288

    CAS  Google Scholar 

  • Clark FE (1949) Soil microorganisms and plant roots. Adv Agron 1:241–248

    CAS  Google Scholar 

  • Cline GR, Reid CPP, Powell PE, Szaniszlo PJ (1984) Effects of a hydroxamate siderophore on iron absorption by sunflower and sorghum. Plant Physiol 76:36–39

    PubMed  CAS  Google Scholar 

  • Cook JR, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA 92:4197–4201

    PubMed  CAS  Google Scholar 

  • Crowley DE, Gries D (1994) Modelling of iron availability in the plant rhizosphere. In: Manthey JA, Crowley DE, Luster DG (ed) Biochemistry of metal micronutrients in the rhizosphere. CRC Press, Boca Raton, Florida, pp 199–220

    Google Scholar 

  • Crowley DE, Reid CPP, Szaniszlo PJ (1988) Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol 87:680–685

    PubMed  CAS  Google Scholar 

  • Crowley DE, Romheld V, Marschner H, Szaniszlo PJ (1992) Root-microbial effects on plant iron uptake from siderophores and phytosiderophores. Plant Soil 142:1–7

    CAS  Google Scholar 

  • Curie C, Briat JB (2003) Iron transport and signalling in plants. Annu Rev Plant Biol 54:183–206

    PubMed  CAS  Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    PubMed  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer, Berlin Heidelberg New York

    Google Scholar 

  • De Boer M, Bom P, Kindt F, Keurentjes JJB, Von der Sluis I, Van Loon LC, Bakker PAHM (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626–632

    Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Google Scholar 

  • Duijff BJ, Bakker, PAHM, Schippers B (1991) Suppression of fusarium wilt of carnation by Pseudomonas in soil: mode of action. In: Keel C, Knoller, B, Défago G (ed) Plant-Growth Promoting Rhizobacteria, IOBC/WPRS, Interlaken, Switzerland, pp 152–157

    Google Scholar 

  • Duijff BJ, Meijer JW, Bakker PAHM, Schippers B (1993) Siderophore-mediated competition for iron and induced resistance in the suppression of Fusarium wilt of carnation by fluorescent Pseudomonas spp. Neth Plant Pathol 99:277–289

    CAS  Google Scholar 

  • Duijff BJ, Bakker PAHM, Schippers B (1994a) Suppression of fusarium wilt of carnation by Pseudomonas putida WCS358 at different levels of disease incidence and iron availability. Biocontrol Sci Technol 4:279–288

    Google Scholar 

  • Duijff BJ, Bakker PAHM, Schippers B (1994b) Ferric pseudobactin 358 as an iron source for carnation. J Plant Nutr 17:2069–2078

    CAS  Google Scholar 

  • Duijff BJ, De Kogel WJ, Bakker PAHM, Schippers B (1994c) Influence of pseudobactin 358 on the iron nutrition of barley. Soil Biol Biochem 26:1681–1994

    CAS  Google Scholar 

  • Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910

    Google Scholar 

  • Duijff BJ, Recorbet G, Bakker PAHM, Loper J, Lemanceau P (1999) Microbial antagonism at the root level is involved in the suppression of fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology 89:1073–1079

    Google Scholar 

  • Edel V, Steinberg C, Gautheron N, Alabouvette C (1997) Populations of nonpathogenic Fusarium oxysporum associated with roots of four plant species compared to soilborne populations. Phytopathology 87:693–697

    Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628

    PubMed  CAS  Google Scholar 

  • Elad Y, Baker R (1985a) Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology 75:1047–1052

    CAS  Google Scholar 

  • Elad Y, Baker R (1985b) The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp. by Pseudomonas spp. Phytopathology 75:1053–1059

    CAS  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common amongst plant-associated than soil-borne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    PubMed  CAS  Google Scholar 

  • Emery T (1965) Isolation, characterization, and properties of fusarinine, a hydroxamic derivative of ornithine. Biochem 4:1410–1417

    CAS  Google Scholar 

  • Eparvier A, Lemanceau P, Alabouvette C (1991) Population dynamics of non-pathogenic Fusarium and fluorescent Pseudomonas strains in rockwool, a substratum for soilless culture. FEMS Microbiol Ecol 86:177–184

    Google Scholar 

  • Fett J, LeVier K, Guerinot ML (1998) Soil microorganisms and iron uptake by higher plants. In: Sigel A, Sigel H (eds) Iron transport and storage in microorganisms, plants and animals, vol 35. Marcel Dekker, New York, pp 187–214

    Google Scholar 

  • Gamalero E, Lingua G, Capri FG, Fusconi A, Berta G, Lemanceau P (2004) Colonization pattern of tomato primary roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microbiol Ecol 48:79–87

    CAS  Google Scholar 

  • Geels FP, Schippers B (1983a) Reduction of yield depressions in high frequency potato cropping soil after seed tuber treatments with antagonistic fluorescent Pseudomonas spp. Phytopath Z 108:207–214

    Google Scholar 

  • Geels FP, Schippers B (1983b) Selection of antagonistic fluorescent Pseudomonas spp. And their root colonization and persistence following treatment of seed potatoes. Phytopath Z 108:193–206

    Google Scholar 

  • Geels FP, Schmidt EDL, Schippers B (1985) The use of 8-hydroxyquinoline for the isolation and prequalification of plant growth-stimulating rhizosphere pseudomonads. Biol Fertil Soil 1:167–173

    CAS  Google Scholar 

  • Gill PR, Warren GJ (1988) An iron-antagonized fungistatic agent that is not required for iron assimilation from a fluorescent rhizosphere pseudomonad. J Bacteriol 170:163–170

    PubMed  CAS  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plants expressing soybean ferritin gene. Transgenic Res 7:173–180

    CAS  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820

    PubMed  CAS  Google Scholar 

  • Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol Fertil Soils 35:399–405

    CAS  Google Scholar 

  • Gutterson N (1990) Microbial fungicides: recent approaches to elucidating mechanisms. Crit Rev Biotechnol 10:69–91

    Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    PubMed  CAS  Google Scholar 

  • Hamdan H, Weller DM, Thomashow LS (1991) Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2–79 and M4-80R. Appl Environ Microbiol 57:3270–3277

    PubMed  CAS  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    PubMed  CAS  Google Scholar 

  • Heungens K, Höfte M, Buysens S, Poppe J (1992) Role of siderophores in biological control of Pythium spp. by Pseudomonas strain 7NSK2. Medede Fac Landbouwwet Univ Gent 57:365–372

    CAS  Google Scholar 

  • Hiltner L (1904) Über neuere erfahrungen und problem auf dem gebeit der bodenbakteriologie und unter besonderer berucksichtigung der grundungung und brache. Arbeit und Deutsche Landwirschaft Gesellschaft 98:59–78

    Google Scholar 

  • Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–264

    CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    CAS  Google Scholar 

  • Höfte M, Seong KY, Jurkevitch E, Verstraete W (1991) Pyoverdin production by the plant growth beneficial Pseudomonas strain 7NSK2: Ecological significance in soil. Plant Soil 130: 249–257

    Google Scholar 

  • Höfte M, Boelens J, Verstraete W (1992) Survival and root colonization of mutants of plant growth-promoting pseudomonads affected in siderophore biosynthesis or regulation of siderophore production. J Plant Nutr 15:2253–2262

    Google Scholar 

  • Hohnadel D, Meyer JM (1988) Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains. J Bacteriol 170:4865–4873

    PubMed  CAS  Google Scholar 

  • Hördt W, Römheld V, Winkelmann G (2000) Fusarinines and dimerum acid, mono-and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants. BioMetals 13:37–46

    PubMed  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858

    PubMed  CAS  Google Scholar 

  • Jonhson GV, Lopez A, La Valle Foster N (2002) Reduction and transport of Fe from siderophores. Plant Soil 241:27–33

    Google Scholar 

  • Jurkevitch E, Hadar Y, Chen Y (1988) Involvement of bacterial siderophores in the remedy of lime-induced chlorosis in peanut. Soil Sci Soc Am J 52:1032–1037

    CAS  Google Scholar 

  • Jurkevitch E, Hadar Y, Chen Y (1992) Utilization of the siderophores FOB and pseudobactin by rhizosphere microorganisms of cotton plants. J Plant Nutr 15:2183–2192

    CAS  Google Scholar 

  • Jurkevitch E, Hadar Y, Chen Y, Chino M, Mori S (1993) Indirect utilization of the phytosiderophore mugineic acid as an iron source to rhizosphere fluorescent Pseudomonas. BioMetals 6:119–123

    PubMed  CAS  Google Scholar 

  • Keel C, Voisard C, Berling CH, Kahr G, Défago G (1989) Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584–589

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980a) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Current Microbiol 4:317–320

    CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980b) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    CAS  Google Scholar 

  • Kraus J, Loper JE (1992) Lack of evidence for the role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off of cucumber. Phytopathology 82:264–271

    Google Scholar 

  • Latour X, Lemanceau P (1997) Métabolisme carboné et énergétique des Pseudomonas spp. fluorescents saprophytes à oxydase positive. Agronomie 17:427–433

    Google Scholar 

  • Latour X, Corberand T, Laguerre G, Allard F, Lemanceau P (1996) The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl Environ Microbiol 62:2449–2456

    PubMed  CAS  Google Scholar 

  • Latour X, Delorme S, Mirleau P, Lemanceau P (2003) Identification of traits implicated in the rhizosphere competence of fluorescent pseudomonads: description of a strategy based on population and model strain studies. Agronomie 23:397–405

    Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995a) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664

    Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995b) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    CAS  Google Scholar 

  • Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155

    CAS  Google Scholar 

  • Lemanceau P (1989) Role of competition for carbon and iron in mechanisms of soil suppressiveness to fusarium wilts. In: Tjamos EC, Beckman CH (ed) Vascular wilt diseases of plants, basic studies and control. Springer, Berlin Heidelberg New York, pp 386–396

    Google Scholar 

  • Lemanceau P (1992) Effets bénéfiques de rhizobactéries sur les plantes: exemple des Pseudomonas spp fluorescent. Agronomie 12:413–437

    Google Scholar 

  • Lemanceau P, Alabouvette C (1991) Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Protect 10:279–286

    Google Scholar 

  • Lemanceau P, Heulin T (1998) La rhizosphère. In: Stengel P, Gelin S (eds) Sol: interface fragile. INRA Edition, Paris, pp 93–106

    Google Scholar 

  • Lemanceau P, Samson R (1983) Relations entre quelques caractéristiques in vitro de 10 Pseudomonas fluorescents et leur effet sur la croissance du haricot (Phaseolus vulgaris). In: Dubos B, Olivier JM (eds) Les antagonismes microbiens, INRA, Paris pp 327–328

    Google Scholar 

  • Lemanceau P, Alabouvette C, Meyer JM (1986) Production of fusarinine and iron assimilation by pathogenic and non-pathogenic Fusarium. In: Swinburne TR (ed) Iron, siderophores and plant diseases. Plenum Press, New York London, pp 251–259

    Google Scholar 

  • Lemanceau P, Alabouvette C, Couteaudier Y (1988a) Recherches sur la résistance des sols aux maladies. XIV. Modification du niveau de réceptivité d’un sol résistant et d’un sol sensible aux fusarioses vasculaires en réponse à des apports de fer ou de glucose. Agronomie 8:155–162

    Google Scholar 

  • Lemanceau P, Samson R, Alabouvette C (1988b) Recherches sur la résistance des sols aux maladies. XV. Comparaison des populations de Pseudomonas fluorescents dans un sol résistant et un sol sensible aux fusarioses vasculaires. Agronomie 8:243–249

    Google Scholar 

  • Lemanceau P, Bakker PAHM, De Kogel WJ, Alabouvette C, Schippers B (1992) Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl Environ Microbiol 58:2978–2982

    PubMed  CAS  Google Scholar 

  • Lemanceau P, Bakker PAHM, De Kogel WJ, Alabouvette C, Schippers B (1993) Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Appl Environ Microbiol 59:74–82

    PubMed  CAS  Google Scholar 

  • Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras JM, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004–1012

    PubMed  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  • Lockwood JL (1977) Fungistasis in soils. Biol Rev 52:1–43

    CAS  Google Scholar 

  • Loper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166–172

    CAS  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13

    CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363

    PubMed  CAS  Google Scholar 

  • Loper JE, Lindow SE (1994) A biological sensor for iron available to bacteria in their habitats on plant surfaces. Appl Environ Microbiol 60:1934–1941

    PubMed  CAS  Google Scholar 

  • Lynch JM (1990) The rhizosphere. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 59–97

    Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. In: Keister DL, Cregan JP (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 15–24

    Google Scholar 

  • Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274

    CAS  Google Scholar 

  • Marschner P, Crowley DE (1998) Phytosiderophores decrease iron stress and pyoverdine production of Pseudomonas fluorescens Pf-5 (pvd-inaZ). Soil Biol Biochem 30:1275–1280

    CAS  Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9:695–713

    CAS  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize sunflower. Biol Fertil Soil 30:433–439

    CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux JP, Défago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    CAS  Google Scholar 

  • Mavingui P, Laguerre G, Berge O, Heulin T (1992) Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere. Appl Environ Microbiol 58:1894–1903

    PubMed  CAS  Google Scholar 

  • Mercado-Blanco J, Rodriguez-Jurado D, Hervas A, Jimenez-Diaz RM (2004) Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biol Cont 30:474–486

    Google Scholar 

  • Meyer JM, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physico-chemical properties. J Gen Microbiol 107:319–328

    CAS  Google Scholar 

  • Meyer JM, Hallé F, Hohnadel D, Lemanceau P, Ratefiarivelo H (1987) Siderophores of Pseudomonas-biological properties. In: Winkelmann G, Van der Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. VCH, Weinheim, pp 189–205

    Google Scholar 

  • Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni NJ (2002) Siderophore typing, a powerful tool for the taxonomy of fluorescent and non-fluorescent Pseudomonas. Appl Environ Microbiol 68:2745–2453

    PubMed  CAS  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Höfte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Google Scholar 

  • Mirleau P, Delorme S, Philippot L, Meyer JM, Mazurier S, Lemanceau P (2000) Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiol Ecol 34:35–44

    PubMed  CAS  Google Scholar 

  • Mirleau P, Philippot L, Corberand T, Lemanceau P (2001) Involvement of nitrate reductase and pyoverdine in competitiveness of Pseudomonas fluorescens strain C7R12 in soil. Appl Environ Microbiol 67:2627–2635

    PubMed  CAS  Google Scholar 

  • Misaghi IJ, Stowell LJ, Grogan RG, Spearman LC (1982) Fungistatic activity of water-soluble fluorescent pigments of fluorescent pseudomonads. Phytopathology 72:33–36

    CAS  Google Scholar 

  • Moënne-Loccoz Y, McHugh B, Stephens PM, McConnell FI, Glennon JD, Dowling DN, O’Gara F (1996) Rhizosphere competence of fluorescent Pseudomonas sp. B24 genetically modified to use additional ferric siderophores. FEMS Microbiol Ecol 19:215–225

    Google Scholar 

  • Neilands JB (1981) Iron absorption and transport in microorganisms. Ann Rev Nut 1:27–46

    CAS  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    CAS  Google Scholar 

  • Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Belanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathol 48:66–76

    Google Scholar 

  • Ongena M, Giger A, Jacques P, Dommes J, Thonart P (2002) Study of bacterial determinants involved in the induction of systemic resistance in bean by Pseudomonas putida BTP1. Eur J Plant Pathol 108:187–196

    CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  CAS  Google Scholar 

  • Paulitz TC, Loper JE (1991) Lack of a role for fluorescent siderophore production in the biological control of Pythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology 81:930–935

    Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Van der Sluis L, Koster M, Bakker PAHM, Weisbeek PJ, Schippers B (1995) Utilisation of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41:126–135

    CAS  Google Scholar 

  • Ran L, Xiang M, Zhou B, Bakker PAHM (2005a) Siderophores are the main determinants of fluorescent Pseudomonas strains in suppression of grey mould in Eucalyptus urophylla. Acta Phytopathol Sinica 35:6–12

    Google Scholar 

  • Ran LX, Liu CY, Wu GJ, Van Loon C, Bakker PAHM (2005b) Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biol Cont 32:111–120

    Google Scholar 

  • Reid CPP, Crowley DE, Kim HJ, Powell PE, Szaniszlo PJ (1984) Utilization of iron by oat when supplied as ferrated synthetic chelate or as ferrated hydroxamate siderophore. J Plant Nutr 7:437–447

    CAS  Google Scholar 

  • Robin A, Vansuyt G, Corberand T, Briat JF, Lemanceau P (2006a) The soil type affects both the differential accumulation of iron between wild type and ferritin over-expressor tobacco plants and the sensitivity of their rhizosphere bacterioflora to iron stress. Plant Soil 283:73–83

    CAS  Google Scholar 

  • Robin A, Mougel C, Siblot S, Vansuyt G, Mazurier S, Lemanceau P (2006b) Effect of ferritin over-expression in tobacco on the structure of bacterial and pseudomonad communities associated with the roots. FEMS Microbiol Ecol 58:492–502

    PubMed  CAS  Google Scholar 

  • Robin A, Mazurier S, Meyer JM, Vansuyt G, Mougel C, Lemanceau P. (In press) Diversity of root-associated fluorescent pseudomonads as affected by ferritin overexpression in tobacco. Environ Microbiol

    Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    PubMed  CAS  Google Scholar 

  • Rovira AD (1965) Interactions between plant roots and soil microorganisms. Ann Rev Microbiol 19:241–266

    CAS  Google Scholar 

  • Rroço E, Kosegarten H, Harizaj F, Imani J, Mengel K (2003) The importance of soil microbial activity for the supply of iron to sorghum and rape. Eur J Agronomy 19:487–493

    Google Scholar 

  • Scher FM, Baker R (1980) Mechanism of biological control in a Fusarium-suppressive soil. Phytopathology 70:412–417

    Google Scholar 

  • Scher FM, Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573

    CAS  Google Scholar 

  • Schimdt W (2003) Iron solutions: acquisition strategies and signalling pathways in plants. Trend Plant Sci 8:188–193

    Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35:887–894

    CAS  Google Scholar 

  • Siebner-Freibach H, Hadar Y, Chen Y (2003) Siderophores sorbed on Ca-montmorillonite as an iron source for plants. Plant Soil 251:115–124

    CAS  Google Scholar 

  • Simeoni LA, Lindsay WL, Baker R (1987) Critical iron level associated with biological control of Fusarium wilt. Phytopathology 77:1057–1061

    CAS  Google Scholar 

  • Sneh B, Dupler M, Elad Y, Baker R (1984) Chlamydospore germination of Fusarium oxysporum f.sp. cucumerinum as affected by fluorescent and lytic bacteria from a Fusarium-suppressive soil. Phytopathology 74:1115–1124

    Google Scholar 

  • Söderberg KH, Bååth E (1998) Bacterial activity along a young barley root measured by the thymidine and leucine incorporation techniques. Soil Biol Biochem 30:1259–1268

    Google Scholar 

  • Stintzi A, Evans K, Meyer JM, Poole K (1998) Quorum sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine synthesis. FEMS Microbiol Lett 166:341–345

    PubMed  CAS  Google Scholar 

  • Sugiura Y, Tanaka H, Mino Y, Ishida T, Ota N, Nomoto K, Yosioka H, Takemoto T (1981) Structure, properties, and transport mechanism of iron(III) complex of mugineic acid, a possible phytosiderophore. J Am Chem Soc 103:6979–6982

    CAS  Google Scholar 

  • Thomashow LS, Weller DM (1990) Role of antibiotics and siderophores in biocontrol of takeall disease of wheat. Plant Soil 129:93–99

    CAS  Google Scholar 

  • Vandenbergh PA, Gonzales CF, Wright AM, Kunka BS (1983) Iron-chelating compounds produced by soil pseudomonads: correlation with fungal growth inhibition. Appl Environ Microbiol 46:128–132

    PubMed  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Google Scholar 

  • Van Peer R, Van Kuik AJ, Rattink H, Schippers B (1990) Control of Fusarium wilt in carnation grown on rockwool by Pseudomonas sp. strain WCS417r and by Fe-EDDHA. Netherlands J Plant Pathol 96:119–132

    Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (In press) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant-Microbe Interact

    Google Scholar 

  • Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van’t Westende YAM, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact 10:716–724

    PubMed  Google Scholar 

  • Van Wuytswinkel O, Vansuyt G, Grignon N, Fourcroy P, Briat JF (1999) Iron homeostasis alteration in transgenic tobacco overexpressing ferritin. Plant J 17:93–98

    PubMed  Google Scholar 

  • Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26:181–189

    PubMed  CAS  Google Scholar 

  • Von Wirén N, Romheld V, Morel JL, Guckert A, Marschner H (1993) Influence of microorganisms on iron acquisition in maize. Soil Biol Biochem 25:371–376

    Google Scholar 

  • Von Wirén N, Romheld V, Shioiri T, Marschner H (1995) Competition between micro-organisms and roots of barley and sorghum for iron accumulated in the root apoplasm. New Phytol 130:511–521

    Google Scholar 

  • Von Wirén N, Khodr H, Hider RC (2000) Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron(III). Plant Physiol 124:1149–1157

    Google Scholar 

  • Walter A, Romheld V, Marschner H, Crowley DE (1994) Iron nutrition of cucumber and maize: effect of Pseudomonas putida YC 3 and its siderophore. Soil Biol Biochem 26:1023–1031

    CAS  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    CAS  Google Scholar 

  • Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–342

    Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogen in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Google Scholar 

  • Weller DM, Howie WJ, Cook RJ (1988) Relationship between in vitro inhibition of Gaeumannomyces graminis var. tritici and suppression of take-all of wheat by fluorescent pseudomonads. Phytopathology 78:1094–1100

    Google Scholar 

  • Wong PTW, Baker R (1984) Suppression of wheat take-all and Ophiobolus patch by fluorescent pseudomonads from fusarium-suppressive soil. Soil Biol Biochem 16:397–403

    Google Scholar 

  • Yang C, Menge JA, Cooksey DA (1994) Mutations affecting hyphal colonization and pyoverdine production in pseudomonads antagonistic toward Phytophthora parasitica. Appl Environ Microbiol 60:473–481

    PubMed  CAS  Google Scholar 

  • Yehuda Z, Shenker M, Romheld V, Marschner H, Hadar Y, Chen Y (1996) The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants. Plant Physiol 112:1273–1280

    PubMed  CAS  Google Scholar 

  • Yehuda Z, Shenker M, Hadar Y, Chen Y (2000) Remedy of chlorosis induced by iron deficiency in plants with the fungal siderophore rhizoferrin. J Plant Nutr 23:1991–2006

    CAS  Google Scholar 

  • Yehuda Z, Hadar Y, Chen Y (2003) Immobilized EDDHA and DFOB as iron carriers to cucumber plants. J Plant Nutr 26:2043–2056

    CAS  Google Scholar 

  • Ying Y, Guerinot ML (1996) Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J 10:835–844

    Google Scholar 

  • YongHoon L, WangHyu L, Duku L, HyeongKwon S (2001) Factors relating to induced systemic resistance in watermelon by plant growth-promoting Pseudomonas spp. Plant Pathol J 17:174–179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lemanceau, P., Robin, A., Mazurier, S., Vansuyt, G. (2007). Implication of Pyoverdines in the Interactions of Fluorescent Pseudomonads with Soil Microflora and Plant in the Rhizosphere. In: Varma, A., Chincholkar, S.B. (eds) Microbial Siderophores. Soil Biology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71160-5_8

Download citation

Publish with us

Policies and ethics