Skip to main content

Influence of Na-bentonite Colloids on the Transport of Heavy Metals in Porous Media

  • Chapter
Colloidal Transport in Porous Media

Abstract

In this work, the influence of Na-bentonite colloids on the transport of Cu, Pb and Zn in porous media was investigated. For the transport experiments a “short pulse” laboratory column system was used. Quartz sand served as column packing material. The metal solutions were injected into the column in the presence and absence of colloids. The quantification of metals at the column outlet was carried out by coupling the column system with an inductively coupled plasma mass spectrometer (ICP-MS). The determination of Na-bentonite colloids was done online by means of a UV detector and the ICP-MS system. Characterisation of the colloid-metal interactions was based on sorption experiments and modelling calculations carried out at pH values of 5 and 7. Furthermore the stability of Na-bentonite colloids was determined in titration experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abollino O, Aceto M, Malandrino M, Sarzanini C, Mentasti E (2003) Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Research 37:1619–1627

    Article  Google Scholar 

  • Bunn RA, Magelky RD, Ryan JN, Elimelech M (2002) Mobilization of natural colloids from an iron oxide-coated sand aquifer: effect of pH and ionic strength. Environ Sci Technol 36:314–322

    Article  Google Scholar 

  • Bradbury MH, Baeyens B (1995) A Quantitative mechanistic description of Ni, Zn and Ca sorption on Na-montmorillonite. Part III: modeling. PSI Bericht Nr. 95-12, Paul Scherrer Institut, Villigen, Switzerland

    Google Scholar 

  • Christl I, Kretzschmar R (2001) Interaction of copper and fulvic acid at the hematite-water interface. Geochimica et Cosmochimica Acta 65,20:3435–3442

    Article  Google Scholar 

  • DIN 38 409-H1-1, Teil 1 (1987) Deutsche Einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung; Summarische Wirkungs-und Stoffkenngrößen (Gruppe H); Bestimmung des Gesamttrockenrückstandes, des Filtrattrockenrückstandes und des Glührückstandes (H 1)

    Google Scholar 

  • Elimelech M, O’Melia CR (1990) Kinetics of deposition of colloidal particles in porous media. Environ Sci Technol 24:1528–1536.

    Article  Google Scholar 

  • Flury M, Mathison JB, Harsh JB (2002) In situ mobilization of colloids and transport of cesium in Hanford sediments. Environ Sci Technol 36:5335–5341

    Article  Google Scholar 

  • Grolimund D, Barmettler K, Borkovec M (2001) Release and transport of colloidal particles in natural porous media. 2. Experimental results and effects of ligands. Water Resour Research 37,3:571–582

    Article  Google Scholar 

  • Grolimund D, Borkovec M, Barmettler K, Sticher H (1996) Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study. Environ Sci Technol 30:3118–3123

    Article  Google Scholar 

  • Grolimund D, Elimelech M, Borkovec M, Barmettler K, Kretzschmar R, Sticher H (1998) Transport of in situ mobilized colloidal particles in packed soil columns. Environ Sci Technol 32:3562–3569

    Article  Google Scholar 

  • Harvey RW, George LH, Smith RL, LeBlanc DR (1989) Transport of microspheres and indigenous bacteria through a sandy aquifer: results of natural-and forced-gradient tracer experiments. Environ Sci Technol 23:51–56

    Article  Google Scholar 

  • Huber N, Baumann T, Niessner R (2000) Assessment of colloid filtration in natural porous media by filtration theory. Environ Sci Technol 34: 3774–3779

    Article  Google Scholar 

  • Janek M, Lagaly G (2001) Proton saturation and rheological properties of smectite dispersions. Applied Clay Science 19:121–130

    Article  Google Scholar 

  • Johnson PR, Elimelech M (1995) Dynamics of colloid deposition in porous media: blocking based on random sequential adsorption. Langmuir 11:801–812

    Article  Google Scholar 

  • Johnson PR, Sun N, Elimelech M (1996) Colloid transport in geochemically heterogeneous porous media: modeling and measurements. Environ Sci Technol 30:3284–3293

    Article  Google Scholar 

  • Kretzschmar R, Barmettler K, Grolimund D, Yan Y, Borkovec M, Sticher H (1997) Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour Research 33,5:1129–1137

    Article  Google Scholar 

  • Kretzschmar R, Borkovec M, Grolimund D, Elimelech M (1999) Mobile subsurface colloids and their role in contaminant transport. Advances in Agronomy 66:121–193

    Article  Google Scholar 

  • Kretzschmar R, Robarge WP, Amoozegar A (1995) Influence of natural organic matter on colloid transport through saprolite. Water Resour Research 31,3:435–445

    Article  Google Scholar 

  • Kretzschmar R, Sticher H (1997) Transport of humic-coated iron oxide colloids in a sandy soil: influence of Ca2+ and trace metals. Environ Sci Technol 31:3497–3504

    Article  Google Scholar 

  • Kulkarni P, Sureshkumar R, Biswas P (2005) Hierarchical approach to model multilayer colloidal deposition in porous media. Environ Sci Technol 39:6361–6370

    Article  Google Scholar 

  • Litton GM, Olson TM (1993) Colloid deposition rates on silica bed media and artifacts related to collector surface preparation methods. Environ Sci Technol 27:185–193

    Article  Google Scholar 

  • Liu D, Johnson PR, Elimelech M (1995) Colloid deposition dynamics in flow through porous media: role of electrolyte concentration. Environ Sci Technol 29:2963–2973

    Article  Google Scholar 

  • Lothenbach B, Furrer G, Schulin R (1997) Immobilization of heavy metals by polynuclear aluminium and montmorillonite compounds. Environ Sci Technol 31:1452–1462

    Article  Google Scholar 

  • McCarthy JF, Zachara JM (1989) Subsurface transport of contaminants. Environ Sci Technol 23:496–502

    Google Scholar 

  • Metreveli G, Kaulisch E-M, Frimmel FH (2005) Coupling of a column system with ICP-MS for the characterisation of colloid-mediated metal(loid) transport in porous media. Acta hydrochim hydrobiol 33,4:337–345

    Article  Google Scholar 

  • Morton JD, Semrau JD, Hayes KF (2001) An X-ray absorption spectroscopy study of the structure and reversibility of copper adsorbed to montmorillonite clay. Geochimica et Cosmochimica Acta 65,16:2709–2722

    Article  Google Scholar 

  • Müller RH (1996) Zetapotential und Partikelladung in der Laborpraxis: Einführung in die Theorie, praktische Meßdurchführung, Dateninterpretation. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Oste LA, Temminghoff EJM, Van Riemsdijk WH (2002) Solid-solution partitioning of organic matter in soils as influenced by an increase in pH or Ca concentration. Environ Sci Technol 36:208–214

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to phreeqc (version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigation Report 99-4259, U.S. Geological Survey, Denver, Colorado

    Google Scholar 

  • Rand B, Pekenć E, Goodwin JW, Smith RW (1980) Investigation into the existence of edge-face coagulated structures in Na-montmorillonite suspensions. J C S Faraday I 76:225–235

    Article  Google Scholar 

  • Roy SB, Dzombak DA (1996) Colloid release and transport processes in natural porous media. Colloids and Surfaces, A: Physicochemical and Engineering Aspects 107:245–262

    Article  Google Scholar 

  • Roy SB, Dzombak DA (1997) Chemical factors influencing colloid-facilitated transport of contaminants in porous media. Environ Sci Technol 31: 656–664

    Article  Google Scholar 

  • Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Colloids and Surfaces, A: Physicochemical and Engineering Aspects 107:1–56

    Article  Google Scholar 

  • Ryde N, Kallay N, Matijević E (1991) Particle adhesion in model systems. Part 14.-Experimental evaluation of multilayer deposition. J Chem Soc Faraday Trans 87,9:1377–1381

    Article  Google Scholar 

  • Saiers JE, Hornberger GM (1999) The influence of ionic strength on the facilitated transport of cesium by kaolinite colloids. Water Resour Research 35,6:1713–1727

    Article  Google Scholar 

  • Saunders JM, Goodwin JW, Richardson RM, Vincent B (1999) A small-angle xray scattering study of the structure of aqueous laponite dispersions. J Phys Chem B 103:9211–9218

    Article  Google Scholar 

  • Schmitt D, Saravia F, Frimmel FH, Schuessler W (2003) NOM-facilitated transport of metal ions in aquifers: importance of complex-dissociation kinetics and colloid formation. Water Research 37:3541–3550

    Article  Google Scholar 

  • Tawari SL, Koch DL, Cohen C (2001) Electrical double-layer effects on the Brownian diffusivity and aggregation rate of laponite clay particles. Journal of Colloid and Interface Science 240:54–66

    Article  Google Scholar 

  • Vinten AJA, Yaron B, Nye PH (1983) Vertical transport of pesticides into soil when adsorbed on suspended particles. J Agric Food Chem 31:662–664

    Article  Google Scholar 

  • Wanner H, Albinsson Y, Karnland O, Wieland E, Wersin P, Charlet L (1994) The acid/base chemistry of montmorillonite. Radiochimica Acta 66,67:157–162

    Google Scholar 

  • Weng L, Fest EPMJ, Fillius J, Temminghoff EJM, Van Riemsdijk WH (2002) Transport of humic and fulvic acids in relation to metal mobility in a copper-contaminated acid sandy soil. Environ Sci Technol 36:1699–1704

    Article  Google Scholar 

  • Zhuang J, Flury M, Jin Y (2003) Colloid-facilitated Cs transport through water-saturated Hanford sediment and Ottawa sand. Environ Sci Technol 37:4905–4911

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Metreveli, G., Frimmel, F.H. (2007). Influence of Na-bentonite Colloids on the Transport of Heavy Metals in Porous Media. In: Frimmel, F.H., Von Der Kammer, F., Flemming, HC. (eds) Colloidal Transport in Porous Media. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71339-5_2

Download citation

Publish with us

Policies and ethics