Skip to main content

Brain-, Gene-, and Quantum Inspired Computational Intelligence: Challenges and Opportunities

  • Chapter
Challenges for Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 63))

Summary

This chapter discusses opportunities and challenges for the creation of methods of computational intelligence (CI) and more specifically – artificial neural networks (ANN), inspired by principles at different levels of information processing in the brain: cognitive-, neuronal-, genetic-, and quantum, and mainly, the issues related to the integration of these principles into more powerful and accurate CI methods. It is demonstrated how some of these methods can be applied to model biological processes and to improve our understanding in the subject area, along with other – being generic CI methods applicable to challenging generic AI problems. The chapter first offers a brief presentation of some principles of information processing at different levels of the brain, and then presents brain-inspired, geneinspired and quantum inspired CI. The main contribution of the chapter though is the introduction of methods inspired by the integration of principles from several levels of information processing, namely: (1) a computational neurogenetic model, that combines in one model gene information related to spiking neuronal activities; (2) a general framework of a quantum spiking neural network model; (3) a general framework of a quantum computational neuro-genetic model. Many open questions and challenges are discussed, along with directions for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari S, Kasabov N (1998) Brain-like Computing and Intelligent Information Systems. Springer Verlag, New York

    Google Scholar 

  2. Arbib M (1987) Brains, Machines and Mathematics. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  3. Arbib M (eds) (2003) The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  4. Benuskova, L. and N. Kasabov (2007) Computational Neurogenetic Modelling, Springer, New York.

    Google Scholar 

  5. Bishop C (1995) Neural networks for pattern recognition. Oxford University Press, Oxford, UK

    Google Scholar 

  6. Brooks, M. (1999) Quantum computing and communications, Springer Verlag, Berlin/Heidelberg.

    MATH  Google Scholar 

  7. Brown, C., Shreiber, M., Chapman, B., and Jacobs, G. (2000) Information science and bioinformatics, in: N.Kasabov, ed, Future directions of intelligent systems and information sciences, Physica Verlag (Springer Verlag), 251-287

    Google Scholar 

  8. Carpenter G, Grossberg S, Markuzon N, Reynolds JH, Rosen DB (1991) Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analogue multi-dimensional maps. IEEE Trans of Neural Networks 3(5): 698-713.

    Article  Google Scholar 

  9. Carpenter G, Grossberg S (1991) Pattern recognition by self-organizing neural networks. Massachusetts. The MIT Press, Cambridge, MA, U.S.A.

    Google Scholar 

  10. Chan, Z., N.Kasabov, Lesley Collins (2006) A Two-Stage Methodology for Gene Regulatory Network Extraction from Time-Course Gene Expression Data, Expert Systems with Applications: An International Journal (ISSN: 0957-4174), Special issue on Intelligent Bioinformatics Systems, 59-63.

    Google Scholar 

  11. Chin, H., Moldin, S. (eds) (2001) Methods in Genomic Neuroscience, CRC Press.

    Google Scholar 

  12. Collin P. Williams, Scott H. Clearwater (1998) Explorations in Quantum Computing, ISBN: 038794768X, Berlin, Germany: Springer-Verlag.

    Google Scholar 

  13. Destexhe A (1998) Spike-and-wave oscillations based on the properties of GABA B receptors. J Neurosci 18: 9099-9111.

    Google Scholar 

  14. Dimitrov, D. S, I. Sidorov and N. Kasabov (2004) Computational Biology, in: M. Rieth and W. Sommers (eds) Handbook of Theoretical and Computational Nanotechnology, Vol. 6 American Scientific Publisher, Chapter 1.

    Google Scholar 

  15. Ezhov, A. and D. Ventura(2000) Quantum neural networks, in: N. Kasabov (ed) Future Directions for Intelligent Systems and Information Sciences, Springer Verlag.

    Google Scholar 

  16. Feynman, R. P., R. B. Leighton, and M. Sands (1965) The Feynman Lectures on Physics, Addison-Wesley Publishing Company, Massachusetts.

    MATH  Google Scholar 

  17. Fogel DB (1995) Evolutionary Computation - Toward a New Philosophy of Machine Intelligence. IEEE Press, New York.

    Google Scholar 

  18. Freeman J, Saad D (1997) Online learning in radial basis function networks. Neural Computation 9 (7)

    Google Scholar 

  19. Freeman W (2000) Neurodynamics. Springer-Verlag, London.

    MATH  Google Scholar 

  20. Fritzke B(1995) A growing neural gas network learns topologies. Advances in Neural Information Processing Systems 7: 625-632.

    Google Scholar 

  21. Gerstner W, Kistler WM (2002) Spiking Neuron Models. Cambridge Univ. Press, Cambridge, MA.

    MATH  Google Scholar 

  22. Grossberg S (1969) On learning and energy - entropy dependence in recurrent and nonrecurrent signed networks. J Stat Phys 1: 319-350.

    Article  MathSciNet  Google Scholar 

  23. Grossberg S (1982) Studies of Mind and Brain. Reidel, Boston.

    MATH  Google Scholar 

  24. Grover, L. K. (1996) A fast quantum mechanical algorithm for data-base search, in STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, New York, NY, USA, ACM Press, 212-219.

    Google Scholar 

  25. Han, K.-H. and J.-H. Kim (2002) Quantum-inspired evolutionary algorithm for a class of combinatorial optimization, IEEE Transactions on Evolutionary Computation, 580-593.

    Google Scholar 

  26. Haykin S (1994) Neural Networks - A Comprehensive Foundation. Prentice Hall, Engelwood Cliffs, NJ.

    MATH  Google Scholar 

  27. Hebb D (1949) The Organization of Behavior. John Wiley and Sons, New York.

    Google Scholar 

  28. Heskes TM, Kappen B (1993) Online learning processes in artificial neural networks. In: (eds) Mathematic Foundations of Neural Networks, vol. Elsevier, Amsterdam, 199-233.

    Google Scholar 

  29. Hey, T. (1999) Quantum computing: An introduction, Computing & Control Engineering Journal, Piscataway, NJ: IEEE Press, June, vol. 10, no. 3,105-112.

    Google Scholar 

  30. Hinton GE (1989) Connectionist learning procedures. Artificial Intelligence 40: 185-234.

    Article  Google Scholar 

  31. Hogg, T. and D. Portnov (2000), Quantum optimization, Information Sciences, 128, 181-197.

    Article  MATH  MathSciNet  Google Scholar 

  32. Jang, J.-S., K.-H. Han, and J.-H. Kim (2003) Quantum-inspired evolutionary algorithm-based face verification, Lecture Notes in Computer Science, 2147-2156.

    Google Scholar 

  33. Kak, S.C. Quantum neural computation, Research report, Louisiana State University, Dep. Electr. and Comp. Eng., Baton Rouge, LA 70803-5901, USA

    Google Scholar 

  34. Kasabov N (1996) Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering. The MIT Press, CA, MA

    MATH  Google Scholar 

  35. Kasabov N (1998) Evolving Fuzzy Neural Networks - Algorithms, Applications and Biological Motivation. In: Yamakawa T, Matsumoto G (eds) Methodologies for the conception, design and application of soft computing, World Scientific, 271-274.

    Google Scholar 

  36. Kasabov N (2001) Evolving fuzzy neural networks for online supervised/unsupervised, knowledge-based learning. IEEE Trans. SMC-part B, Cybernetics 31(6): 902-918

    Article  Google Scholar 

  37. Kasabov N. (2007) Evolving connectionist systems: The Knowledge Engineering Approach, Springer Verlag, London, New York, Heidelberg, in print (first edition 2002)

    MATH  Google Scholar 

  38. Kasabov N, Song Q (2002) DENFIS: Dynamic, evolving neural-fuzzy inference systems and its application for time-series prediction. IEEE Trans. on Fuzzy Systems 10:144-154

    Article  Google Scholar 

  39. Kasabov N., Chan, S. H., Jain, V., Sidirov, I., and Dimitrov S. D. (2004) Gene Regulatory Network Discovery from Time-Series Gene Expression Data - A Computational Intelligence Approach, Lecture Notes in Computer science (LNCS), Springer-Verlag, Vol. 3316, 1344-1353.

    Google Scholar 

  40. Kasabov N. and L. Benuskova (2004)Computational Neurogenetics, International Journal of Theoretical and Computational Nanoscience, Vol. 1 (1) American Scientific Publisher, 2004, 47-61.

    Article  Google Scholar 

  41. Kohonen T (1997) Self-Organizing Maps. Springer, Verlag.

    Google Scholar 

  42. Kouda, N., N. Matsui, H. Nishimura, and F. Peper (2005) Qubit neural network and its learning efficiency, Neural Comput. Appl., 14, 114-121.

    Article  Google Scholar 

  43. Liu, J., W. Xu, and J. Sun, Quantum-behaved particle swarm optimization with mutation operator, in 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’05), 2005.

    Google Scholar 

  44. Maass W, Bishop CM (eds) (1999) Pulsed Neural Networks, The MIT Press, Cambridge, MA.

    Google Scholar 

  45. Marcus G (2004) The Birth of the Mind: How a Tiny Number of Genes Creates the Complexity of the Human Mind. Basic Books, New York.

    Google Scholar 

  46. Moody J, Darken C (1989) Fast learning in networks of locally-tuned processing units Neural Computation 1: 281-294

    Google Scholar 

  47. Narayanan, A. and T. Meneer, Quantum artificial neural network architectures and components, Information Sciences, (2000), 199-215.

    Google Scholar 

  48. Penrose, R., Shadows of the mind. A search for the missing science of consciousness, Oxford University Press, 1994.

    Google Scholar 

  49. Penrose, R., The Emperor's new mind, Oxford Univ.Press, Oxford, 1989

    Google Scholar 

  50. Perkowski, M.A. Multiple-valued quantum circuits and research challenges for logic design and computational intelligence communities, IEEE Comp.Intelligence Society Magazine, November, 2005

    Google Scholar 

  51. Platt, J (1991) A resource allocating network for function interpolation. Neural Computation 3: 213-225

    Article  MathSciNet  Google Scholar 

  52. Poggio T (1994) Regularization theory, radial basis functions and networks. In: From Statistics to Neural Networks: Theory and Pattern Recognition Applications. NATO ASI Series, No.136, 83-104

    Google Scholar 

  53. Pribram, K. (1993) Rethinking Neural Networks: Quantum Fields and Biological data. Proceeding of the first Appalachian Conference on behavioral Neurodynamics. Lawrence Erlbaum Associates Publishers, Hills-date new Yersy

    Google Scholar 

  54. Resconi, G. and A.J.van Der Wal (2000), A data model for the morphogenetic neuron, Int.J.General Systems,Vol.29(1), 141-149.

    Article  MATH  Google Scholar 

  55. Resconi, G., G.J.Klir, E.Pessa (1999), Conceptual Foundations of quantum mechanics the role of evidence theory, quantum sets and modal logic. International Journal of Modern Physics C. Vol.10 No.1, 29-62

    Article  MATH  MathSciNet  Google Scholar 

  56. Rolls, E. and A.Treves (1998) Neural Networks and Brain Function, Oxford University Press

    Google Scholar 

  57. Rosenblatt F (1962) Principles of Neurodynamics. Spartan Books, New York.

    MATH  Google Scholar 

  58. Rumelhart DE, Hinton GE, Williams RJ (eds) (1986) Learning internal representations by error propagation. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, MIT Press / Bradford Books, Cambridge, MA.

    Google Scholar 

  59. Rummery GA, Niranjan M (1994) Online Q-learning using connectionist system. Cambridge University Engineering Department, CUED/FINENG/TR, pp 166

    Google Scholar 

  60. Schaal S, Atkeson C (1998) Constructive incremental learning from only local information. Neural Computation 10: 2047-2084

    Article  Google Scholar 

  61. Shor, P. W. (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput., 26, 1484-1509.

    Article  MATH  MathSciNet  Google Scholar 

  62. Song Q, Kasabov N (2005) TWNFI - Transductive Neural-Fuzzy Inference System with Weighted Data Normalization and Its Application in Medicine. IEEE Tr Fuzzy Systems, December, Vol.13, 6, 799-808

    Article  Google Scholar 

  63. Spector, L. (2004) Automatic Quantum Computer Programming: A Genetic Programming Approach, Kluwer Academic Publishers, 2004.

    Google Scholar 

  64. Taylor JG (1999) The Race for Consciousness. MIT Press, Cambridge, MA.

    Google Scholar 

  65. Trugenberger, C. A. (2002) Quantum pattern recognition, Quantum Information Processing, 1, pp. 471-493.

    Article  MathSciNet  Google Scholar 

  66. Tsai, X.-Y., H.-C. Huang, and S.-J. Chuang (2005) Quantum NN vs. NN in signal recognition, in ICITA’05: Proceedings of the Third International Conference on Information Technology and Applications (ICITA’05) Volume 2, Washington, DC, USA, IEEE Computer Society, pp. 308-312.

    Google Scholar 

  67. Vapnik V (1998) Statistical Learning Theory. John Wiley & Sons Inc.

    Google Scholar 

  68. Venayagamoorthy, G. K and Gaurav, S. (2006) Quantum-Inspired Evolutionary Algorithms and Binary Particle Swarm Optimization for Training MLP and SRN Neural Networks, Journal of Theoretical and Computational Nanoscience, January.

    Google Scholar 

  69. Ventura, D. and T. Martinez (2000) Quantum associative memory, Inf. Sci. Inf. Comput. Sci., 124, 273-296.

    MathSciNet  Google Scholar 

  70. Ventura, D.(1999) Implementing competitive learning in a quantum system, in Proceedings of the International Joint Conference of Neural Networks, IEEE Press.

    Google Scholar 

  71. Wysoski, S., L. Benuskova and N. Kasabov (2006) Online learning with structural adaptation in a network of spiking neurons for visual pattern recognition, Proc. ICANN 2006, LNCS, Springer, Part I, Vol.413, 61-70

    Google Scholar 

  72. Xie, G. and Z. Zhuang (2003) A quantum competitive learning algorithm, Liangzi Dianzi Xuebao/Chinese Journal of Quantum Electronics (China), 20,42-46.

    Google Scholar 

  73. Yamakawa T, Kusanagi H, Uchino E, Miki T (1993) A new Effective Algorithm for Neo Fuzzy neuron Model, In: Proc. Fifth IFSA World Congress, IFSA, Seoul, Korea, pp 1017-1020.

    Google Scholar 

  74. Yao X (1993) Evolutionary artificial neural networks. Intl J Neural Systems 4(3): 203-222.

    Article  Google Scholar 

  75. Zadeh LA (1965) Fuzzy Sets. Information and Control 8: 338-353.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kasabov, N. (2007). Brain-, Gene-, and Quantum Inspired Computational Intelligence: Challenges and Opportunities. In: Duch, W., Mańdziuk, J. (eds) Challenges for Computational Intelligence. Studies in Computational Intelligence, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71984-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71984-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71983-0

  • Online ISBN: 978-3-540-71984-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics