Skip to main content

Approximate Implicitization of Space Curves and of Surfaces of Revolution

  • Chapter
Geometric Modeling and Algebraic Geometry

We present techniques for creating an approximate implicit representation of space curves and of surfaces of revolution. In both cases, the proposed techniques reduce the problem to that of implicitization of planar curves. For space curves, which are described as the intersection of two implicitly defined surfaces, we show how to generate an approximately orthogonalized implicit representation. In the case of surfaces of revolution, we address the problem of avoiding unwanted branches and singular points in the region of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, M., Jüttler, B., Kim, M.-S.: Analyzing and enhancing the robustness of implicit representations, in: Geometric Modelling and Processing 2004, IEEE Press, 131-140.

    Google Scholar 

  2. Chuang, J., Hoffmann, C.: On local implicit approximation and its applications. ACM Trans. Graphics 8, 4:298-324, (1989)

    Article  MATH  Google Scholar 

  3. Corless, R., Giesbrecht, M., Kotsireas, I., Watt, S.: Numerical implicitization of parametric hypersurfaces with linear algebra. In: AISC’2000 Proceedings, Springer, LNAI 1930.

    Google Scholar 

  4. Cox, D., Little, J., O’Shea, D.: Using algebraic geometry, Springer Verlag, New York 1998.

    MATH  Google Scholar 

  5. Cox, D., Goldman, R., Zhang, M.: On the validity of implicitization by moving quadrics for rational surfaces with no base points, J. Symbolic Computation, 11, (1999)

    Google Scholar 

  6. Dokken, T., et al.: Intersection algorithms for geometry based IT-applications using approximate algebraic methods, EU project IST-2001-35512 GAIA II, 2002-2005.

    Google Scholar 

  7. Dokken, T., and Thomassen, J., Overview of Approximate Implicitization, in: Topics in Algebraic Geometry and Geometric Modeling, AMS Cont. Math. 334 (2003), 169-184.

    Google Scholar 

  8. Gonzalez-Vega, L.: Implicitization of parametric curves and surfaces by using multidimensional Newton formulae. J. Symb. Comput. 23 (2-3), 137-151 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hoschek, J., and Jüttler, B.: Techniques for fair and shape-preserving surface fitting with tensor-product B-splines, in: J.M. Peña (ed.), Shape Preserving Representations in Computer Aided Design, Nova Science Publishers, New York 1999, 163-185.

    Google Scholar 

  10. Jüttler, B.: Least-squares fitting of algebraic spline curves via normal vector estimation, in: Cipolla, R., Martin, R.R. (eds.), The Mathematics of Surfaces IX, Springer, London, 263-280, 2000.

    Google Scholar 

  11. Jüttler, B., and Felis, A.: Least-squares fitting of algebraic spline surfaces, Adv. Comp. Math. 17 (2002), 135-152.

    Article  MATH  Google Scholar 

  12. Mourrain, B., Pavone, J.-P., Subdivision methods for solving polynomial equations, Technical Report 5658, INRIA Sophia-Antipolis, 2005.

    Google Scholar 

  13. Sampson, P. D. Fitting conic sections to very scattered data: an iterative refinement of the Bookstein algorithm, Computer Graphics and Image Processing 18 (1982), 97-108.

    Article  Google Scholar 

  14. Sederberg, T., Chen F.: Implicitization using moving curves and surfaces. Siggraph 1995, 29,301-308, (1995)

    Google Scholar 

  15. Shalaby, M. F., Thomassen, J. B., Wurm, E. M., Dokken, T., Jüttler, B.: Piecewise approximate implicitization: Experiments using industrial data, in: Algebraic Geometry and Geometric Modeling (Mourrain, B., Elkadi, M., Piene, R., eds.), Springer, in press.

    Google Scholar 

  16. Wurm, E., Jüttler, B.: Approximate implicitization via curve fitting, in Kobbelt, L., Schröder, P., Hoppe, H. (eds.), Symposium on Geometry Processing, Eurographics / ACM Siggraph, New York 2003, 240-247.

    Google Scholar 

  17. Wurm, E., Thomassen, J., Jüttler, B., Dokken, T.: Comparative Benchmarking of Methods for Approximate Implicitization, in: Neamtu, M., and Lucian, M. (eds.), Geometric Design and Computing, Nashboro Press, Brentwood 2004, 537-548.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shalaby, M., Jüttler, B. (2008). Approximate Implicitization of Space Curves and of Surfaces of Revolution. In: Jüttler, B., Piene, R. (eds) Geometric Modeling and Algebraic Geometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72185-7_12

Download citation

Publish with us

Policies and ethics