Skip to main content

Patterns of Nanodroplets: The Belousov-Zhabotinsky-Aerosol OT-Microemulsion System

  • Chapter
Self-Organized Morphology in Nanostructured Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 99))

Summary

A reverse microemulsion composed of octane, water and the surfactant aerosol OT (AOT) consists of nanometer-sized droplets of water surrounded by a monolayer of AOT molecules floating in a sea of oil. If one adds to this system the components of the Belousov-Zhabotinsky (BZ) oscillating chemical reaction, one can observe a remarkable variety of complex patterns. These include spirals and traveling concentric circular waves that may move either toward or away from their centers, segmented traveling waves, chaotic waves, stationary Turing patterns and standing waves, and localized patterns. The wavelengths of the observed structures are typically of the order of 200 µm, i.e., about 20,000 droplet diameters. The type of pattern obtained can be controlled by varying the microemulsion composition, which determines the size and spacing of the droplets, and the concentrations of the BZ reactants, which determines the chemical kinetics. The behavior can be simulated numerically using relatively simple reaction-diffusion models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Haberfeld, Chem. Eng. News 82, 6 (2004)

    Google Scholar 

  2. B.P. Belousov, Collection of Short Papers on Radiation Medicine (Medgiz, Moscow, 1959), pp. 145-152

    Google Scholar 

  3. A.M. Zhabotinsky, Biofizika 9, 306 (1964)

    Google Scholar 

  4. R.J. Field, M. Burger, Oscillations and Traveling Waves in Chemical Systems (Wiley, New York, 1985)

    Google Scholar 

  5. A.N. Zaikin, A.M. Zhabotinsky, Nature 225, 535 (1970)

    Article  PubMed  ADS  CAS  Google Scholar 

  6. W.Y. Tam, W. Horsthemke, Z. Noszticzius, H.L. Swinney, J. Chem. Phys. 88, 3395 (1988)

    Article  ADS  CAS  Google Scholar 

  7. T. Yamaguchi et al., J. Phys. Chem. 95, 5831 (1991)

    Article  CAS  Google Scholar 

  8. D. Winston et al., Nature 351, 132 (1991)

    Article  ADS  CAS  Google Scholar 

  9. J. Maselko, K. Showalter, Nature 339, 609 (1989)

    Article  ADS  CAS  Google Scholar 

  10. T. Amemiya, M. Nakaiwa, T. Ohmori, T. Yamaguchi, Physica D 84, 103 (1995)

    Article  CAS  Google Scholar 

  11. T.K. De and A. Maitra, Adv. Colloid Interface Sci. 59, 95 (1995)

    Article  CAS  Google Scholar 

  12. M. Kotlarchyk, S.H. Chen, J.S. Huang, J. Phys. Chem. 86, 3273 (1982)

    Article  CAS  Google Scholar 

  13. M. Almgren, R. Johannsson, J. Phys. Chem. 96, 9512 (1992)

    Article  CAS  Google Scholar 

  14. M.S. Baptista, C.D. Tran, J. Phys. Chem. B 101, 4209 (1997)

    Article  CAS  Google Scholar 

  15. L.J. Schwartz, C.L. DeCiantis, S. Chapman, B.K. Kelley, J.P. Hornak, Langmuir 15,5461 (1999)

    Article  CAS  Google Scholar 

  16. P.P. Infelta, M. Gratzel, J.K. Thomas, J. Phys. Chem. 78, 190 (1974)

    Article  CAS  Google Scholar 

  17. M. Tachiya, Chem. Phys. Lett. 33, 289 (1975)

    Article  ADS  CAS  Google Scholar 

  18. I. Gonda, G.A. Rodley, J. Phys. Chem. 94, 1516 (1990)

    Article  CAS  Google Scholar 

  19. V.K. Vanag, D.V. Boulanov, J. Phys. Chem. 98, 1449 (1994)

    Article  CAS  Google Scholar 

  20. R. Johannsson, M. Almgren, J. Alsins, J. Phys. Chem. 95, 3819 (1991)

    Article  CAS  Google Scholar 

  21. H. Mays, J. Phys. Chem. B 101, 10271 (1997)

    Article  CAS  Google Scholar 

  22. A.M. Turing, Philos. Trans. R. Soc. London. Ser. B 237, 37 (1952)

    Article  ADS  Google Scholar 

  23. V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Phys. Rev. Lett. 64, 2953 (1990)

    Article  PubMed  ADS  CAS  Google Scholar 

  24. V.K. Vanag, I.R. Epstein, Phys. Rev. Lett. 88, 088303 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  25. J.P. Keener, J.J. Tyson, Physica D 21, 307 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. V.S. Zykov, Biophysics 25, 906 (1980)

    Google Scholar 

  27. V.K. Vanag, I.R. Epstein, Science 294, 835 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  28. V.K. Vanag, I.R. Epstein, Phys. Rev. Lett. 87, 228301 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  29. L. Brusch, E.M. Nicola, M. Bar, Phys. Rev. Lett. 92, 089801 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  30. S.J. Woo, J. Lee, K.J. Lee, Phys. Rev. E 68, 016208 (2003)

    Article  ADS  CAS  Google Scholar 

  31. H. Skodt, P.G. Sorensen, Phys. Rev. E 68, 020902 (2003)

    Article  ADS  CAS  Google Scholar 

  32. O.A. Mornev, I.M. Tsyganov, O.V. Aslanidi, M.A. Tsyganov, JETP Lett. 77, 270 (2003)

    Article  ADS  CAS  Google Scholar 

  33. Y. Gong, D.J. Christini, Phys. Rev. Lett. 90, 088302 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  34. V.K. Vanag, I.R. Epstein, Phys. Rev. Lett. 90, 098301 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  35. V.K. Vanag, I. R. Epstein, Proc. Nat. Acad. Sci. 100, 14635 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  36. H. Jamgotchian, N. Bergeon, D. Benielli, Ph. Voge, B. Billia, R. Guerin, Phys. Rev. Lett. 87, 166105 (2001)

    Google Scholar 

  37. E.S. Lobanova, F.I. Ataullakhanov, Phys. Rev. Lett. 91, 138301 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  38. V.K. Vanag, L. Yang, M. Dolnik, A.M. Zhabotinsky, I.R. Epstein, Nature 406, 389 (2000)

    Article  PubMed  ADS  CAS  Google Scholar 

  39. V.K. Vanag, A.M. Zhabotinsky, I.R. Epstein, Phys. Rev. Lett. 86, 552 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  40. V.K. Vanag, I.R. Epstein, Phys. Rev. Lett. 92, 128301 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  41. P.B. Umbanhowar, F. Melo, H.L. Swinney, Nature 382, 793 (1996)

    Article  ADS  CAS  Google Scholar 

  42. A. Kaminaga, V.K. Vanag, I.R. Epstein, Angewandte Chemie Int. Ed. 45, 3087 (2006)

    Article  CAS  Google Scholar 

  43. V.K. Vanag, Physics-Uspekhi 42, 481 (1999)

    Article  Google Scholar 

  44. R.J. Field, R.M. Noyes, J. Chem. Phys. 60, 1877 (1974)

    Article  ADS  CAS  Google Scholar 

  45. R.J. Field, E. Körös, R.M. Noyes, J. Am. Chem. Soc. 94, 8649 (1972)

    Article  CAS  Google Scholar 

  46. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  CAS  Google Scholar 

  47. I. Prigogine, R. Lefever, J. Chem. Phys. 48, 1695 (1967)

    Article  ADS  Google Scholar 

  48. P. De Kepper, I.R. Epstein, K. Kustin, M. Orban, J. Phys. Chem. 86, 170 (1982)

    Article  CAS  Google Scholar 

  49. G. Sprintschnik, H.W. Sprintschnik, P.P. Kirsch, D.G. Whitten, J. Am. Chem. Soc. 99, 4947 (1977)

    Article  CAS  Google Scholar 

  50. J. Dicke, P. Erichsen, J. Wolff, H.H. Rotermund, Surf. Sci. 462, 90 (2000)

    Article  ADS  CAS  Google Scholar 

  51. A. De Wit, G. Dewel, P. Borckmans, D. Walgraef, Physica D 61, 289 (1992)

    Article  MATH  ADS  Google Scholar 

  52. A. De Wit, P. Borckmans, G. Dewel, Proc. Nat. Acad. Sci. 94, 12765 (1997)

    Article  PubMed  ADS  CAS  Google Scholar 

  53. P. Coullet, C. Riera, C. Tresser, Chaos 14, 193 (2004)

    Article  MATH  PubMed  MathSciNet  ADS  CAS  Google Scholar 

  54. J.M. Epstein, R. Axtell, Growing Artificial Societies (Brookings Institution, Washington, DC, 1996)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vanag, V.K., Epstein, I.R. (2008). Patterns of Nanodroplets: The Belousov-Zhabotinsky-Aerosol OT-Microemulsion System. In: Al-Shamery, K., Parisi, J. (eds) Self-Organized Morphology in Nanostructured Materials. Springer Series in Materials Science, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72675-3_5

Download citation

Publish with us

Policies and ethics