Skip to main content

Graph Embedding Using Quantum Commute Times

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4538))

Abstract

In this paper, we explore analytically and experimentally the commute time of the continuous-time quantum walk. For the classical random walk, the commute time has been shown to be robust to errors in edge weight structure and to lead to spectral clustering algorithms with improved performance. Our analysis shows that the commute time of the continuous-time quantum walk can be determined via integrals of the Laplacian spectrum, calculated using Gauss-Laguerre quadrature. We analyse the quantum commute times with reference to their classical counterpart. Experimentally, we show that the quantum commute times can be used to emphasise cluster-structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borgwardt, K., Schönauer, S., Vishwanathan, S., Smola, A., Kriegel, H.: Protein function prediction via graph kernels. Bioinformatics 21, (June 2005)

    Google Scholar 

  2. Childs, A., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Information Processing 1(1-2), 35–43 (2002)

    Article  MathSciNet  Google Scholar 

  3. DePiero, F., Carlin, J.: Structural matching via optimal basis graphs. In: ICPR 2006, pp. 449–452 (2006)

    Google Scholar 

  4. Emms, D., Severini, S., Wilson, R.C., Hancock, E.: Coined quantum walks lift the cospectrality of graphs and trees. In: EMMCVPR, pp. 332–345 (2005)

    Google Scholar 

  5. Kempe, J.: Quantum random walks – an introductory overview. Contemporary Physics 44(4), 307–327 (2003)

    Article  MathSciNet  Google Scholar 

  6. Lovász, L.: Combinatorics, Paul Erdös is Eighty, chapter Random Walks on Graphs: A Survey, János Bolyai Mathematical Society, vol. 2, pp. 353–398., Budapest (1996)

    Google Scholar 

  7. Luo, B., Wilson, R.C., Hancock, E.: Spectral embedding of graphs. Pattern Recognition 36(10), 2213–2230 (2003)

    Article  MATH  Google Scholar 

  8. Meila, M., Shi, J.: A random walks view of spectral segmentation. In: AI and STATISTICS (AISTATS) 2001 (2001)

    Google Scholar 

  9. Nayak, A., Vishwanath, A.: Quantum walk on the line (2000)

    Google Scholar 

  10. Neuhaus, M., Bunke, H.: A random walk kernel derived from graph edit distance. In: SSPR, pp. 191–199 (2006)

    Google Scholar 

  11. Qiu, H., Hancock, E.: Robust multi-body motion tracking using commute time clustering. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 160–173. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Robles-Kelly, A., Hancock, E.: String edit distance, random walks and graph matching. International Journal of Pattern Recognition and Artificial Intelligence 18(3), 315–327 (2004)

    Article  Google Scholar 

  13. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: ICML, pp. 1561–1566 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Escolano Mario Vento

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emms, D., Wilson, R.C., Hancock, E. (2007). Graph Embedding Using Quantum Commute Times. In: Escolano, F., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2007. Lecture Notes in Computer Science, vol 4538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72903-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72903-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72902-0

  • Online ISBN: 978-3-540-72903-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics