Skip to main content

The Olivocochlear System Takes Part in Audio-Vocal Interaction

  • Conference paper
Hearing – From Sensory Processing to Perception

The auditory system and the vocal control system do not function independently of each other. On the one hand, vocal output is directly influenced by auditory feedback; an example is the “Lombard” reflex. On the other hand, auditory perception is directly influenced by the vocal output. The middle-ear reflex is an example, in which the auditory input is attenuated by contraction of the middle ear muscles during self-produced sounds in order to protect the inner ear (Suga and Jen 1975). Damping of inner ear activation during one’s own vocalizations is also achieved via the action of the olivocochlear system (OCS) (Goldberg and Henson 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benevento LA, McCleary LB (1992) An immunocytochemical method for marking microelectrode tracks following single-unit recordings in long surviving, awake monkeys. J Neurosci Methods 41:199–204.

    Article  CAS  PubMed  Google Scholar 

  • Brumm H, Voss K, Kollmer I, Todt D (2004) Acoustic communication in noise: regulation of call characteristics in a New World monkey. J Exp Biol 207:443–448.

    Article  PubMed  Google Scholar 

  • Eliades SJ, Wang X (2003) Sensory-motor interaction in the primate auditory cortex during self-initiated vocalizations. J Neurophysiol 89:2194–2207.

    Article  PubMed  Google Scholar 

  • Goldberg RL, Henson OW Jr (1998) Changes in cochlear mechanics during vocalization: evidence for a phasic medial efferent effect. Hear Res 122:71–81.

    Article  CAS  PubMed  Google Scholar 

  • Groff JA, Liberman MC (2003) Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. J Neurophysiol 90:3178–3200.

    Article  PubMed  Google Scholar 

  • Grohrock P, Häusler U, Jürgens U (1997) Dual-channel telemetry system for recording vocalization-correlated neuronal activity in freely moving squirrel monkeys. J Neurosci Methods 76:7–13.

    Article  CAS  PubMed  Google Scholar 

  • Guinan JJ Jr, Warr WB, Norris BE (1984) Topographic organization of the olivocochlear projections from the lateral and medial zones of the superior olivary complex. J Comp Neurol 226:21–27.

    Article  PubMed  Google Scholar 

  • Hage SR, Jürgens U, Ehret G (2006) Audio-vocal interaction in the pontine brainstem during self-initiated vocalization in the squirrel monkey. Eur J Neurosci 23:3297–3308.

    Article  PubMed  Google Scholar 

  • Helfert RH, Aschoff A (1997) Superior olivary complex and nuclei of the lateral lemniscus. In: Ehret G, Romand R (eds) The central auditory system. Oxford University Press, New York, pp 193–258.

    Google Scholar 

  • Huffman RF, Henson OW Jr (1990) The descending auditory pathway and acousticomotor systems: connections with the inferior colliculus. Brain Res Brain Res Rev 15:295–323.

    Article  CAS  PubMed  Google Scholar 

  • Jürgens U (2000) Localization of a pontine vocalization-controlling area. J Acoust Soc Am 108:1393–1396.

    Article  PubMed  Google Scholar 

  • Jürgens U, Hage SR (2006) Telemetric recording of neuronal activity. Methods 38:195–201.

    Article  PubMed  Google Scholar 

  • Liberman MC (1988) Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise. J Neurophysiol 60:1779–1798.

    CAS  PubMed  Google Scholar 

  • Metzner W (1993) An audio-vocal interface in echolocating horseshoe bats. J Neurosci 13:1899–1915.

    CAS  PubMed  Google Scholar 

  • Mulders WH, Robertson D (2001) Origin of the noradrenergic innervation of the superior olivary complex in the rat. J Chem Neuroanat 21:313–322.

    Article  CAS  PubMed  Google Scholar 

  • Mulders WH, Robertson D (2005) Diverse responses of single auditory afferent fibres to electrical stimulation of the inferior colliculus in guinea-pig. Exp Brain Res 160:235–244.

    Article  CAS  PubMed  Google Scholar 

  • Nonaka S, Takahashi R, Enomoto K, Katada A, Unno T (1997) Lombard reflex during PAG-induced vocalization in decerebrate cats. Neurosci Res 29:283–289.

    Article  CAS  PubMed  Google Scholar 

  • Patuzzi RB, Thompson ML (1991) Cochlear efferent neurones and protection against acoustic trauma: protection of outer hair cell receptor current and interanimal variability. Hear Res 54:45–58.

    Article  CAS  PubMed  Google Scholar 

  • Romand R, Ehret G (1984) Development of sound production in normal, isolated, and deafened kittens during the first postnatal months. Dev Psychobiol 17:629–649.

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Capt M, Dolivo M, De Ribaupierre F (1986) Tensor tympani reflex pathways studied with retrograde horseradish peroxidase and transneuronal viral tracing techniques. Neurosci Lett 72:247–252.

    Article  CAS  PubMed  Google Scholar 

  • Suga N, Jen PH (1975) Peripheral control of acoustic signals in the auditory system of echolocating bats. J Exp Biol 62:277–311.

    CAS  PubMed  Google Scholar 

  • Talmage-Riggs G, Winter P, Ploog D, Mayer W (1972) Effect of deafening on the vocal behavior of the squirrel monkey (Saimiri sciureus). Folia Primatol 17:404–420.

    Article  CAS  PubMed  Google Scholar 

  • Tammer R, Ehrenreich L, Jürgens U (2004) Telemetrically recorded neuronal activity in the inferior colliculus and bordering tegmentum during vocal communication in squirrel monkeys (Saimiri sciureus). Behav Brain Res 151:331–336.

    Article  PubMed  Google Scholar 

  • Thompson GC, Thompson AM (1986) Olivocochlear neurons in the squirrel monkey brainstem. J Comp Neurol 254:246–258.

    Article  CAS  PubMed  Google Scholar 

  • Thompson GC, Igarashi M, Stach BA (1985) Identification of stapedius muscle motoneurons in squirrel monkey and bush baby. J Comp Neurol 231:270–279.

    Article  CAS  PubMed  Google Scholar 

  • Wiederhold ML, Kiang NY (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965.

    Article  CAS  PubMed  Google Scholar 

  • Wienicke A, Häusler U, Jürgens U (2001) Auditory frequency discrimination in the squirrel monkey. J Comp Physiol A 187:189–195.

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Suga N (2002) Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nat Neurosci 5:57–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hage, S.R., Jürgens, U., Ehret, G. (2007). The Olivocochlear System Takes Part in Audio-Vocal Interaction. In: Kollmeier, B., et al. Hearing – From Sensory Processing to Perception. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73009-5_21

Download citation

Publish with us

Policies and ethics