Skip to main content

Traversing Scales: Large Scale Simulation of the Cat Cortex Using Single Neuron Models

  • Chapter
Lectures in Supercomputational Neurosciences

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christof Koch. Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York, 1999.

    Google Scholar 

  2. E M Izhikevich. Polychronization: computation with spikes. Neural Computation, 18:245–282, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  3. V K Jirsa and H Haken. A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D, 99:503–526, 1997.

    Article  MATH  Google Scholar 

  4. M Abeles. Time is precious. Science, 304:523–524, 2004.

    Google Scholar 

  5. E Ahissar and A Arieli. Figuring space by time. Neuron, 32:185–201, 2001.

    Article  Google Scholar 

  6. E M Izhikevich, N S Desai, E C Walcott, and F C Hopensteadt. Bursts as a unit of neural informations: selective communication via resonance. Trends in Neuroscience, 26(3):161–167, 2003.

    Article  Google Scholar 

  7. S Thorpe, A Delorme, and R Van Rullen. Spike-based strategies for rapid processing. Neural Networks, 6–7(14):715–725, 2001.

    Article  Google Scholar 

  8. N Kopell, G B Ermentrout, M A Whittington, and R D Traub. Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci USA, 97(4):1867–1872, 2000.

    Article  ADS  Google Scholar 

  9. W J Freeman. Mass Action in the Nervous System. Examination of the Neurophysiological Basis of Adaptive Behavior through the EEG. Academic Press, New York, 1975.

    Google Scholar 

  10. H R Wilson and J D Cowan. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J, 12(1):1–24, 1972.

    Article  ADS  Google Scholar 

  11. J W Scannel, G A P C Burns, C C Hilgetag, M A O’Neil, and M P Young. The connectional organization of the cortico-thalamic system of the cat. Cerebral Cortex, 9(3):277–299, 1999.

    Article  Google Scholar 

  12. E M Izhikevich. Simple model of spiking neurons. IEEE Transactions on neural networks, 14(6):1569–1572, 2003.

    Article  MathSciNet  Google Scholar 

  13. E M Izhikevich, J A Gally, and G M Edelmann. Spike-timing dynamics of neuronal groups. Cereb Cortex, 14(8):933–944, 2004.

    Article  Google Scholar 

  14. B W Connors and M J Gutnick. Intrinsic firing patterns of diverse neocortical neurons. Trends in Neuroscience, 13(9):365–366, 1990.

    Article  Google Scholar 

  15. C M Gray and D A McCormick. Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous osillations in the visual cortex. Science, 274(5284):109–113, 1996.

    Article  ADS  Google Scholar 

  16. H A Swadlow. Physiological properties of individual cerebral axons studied in vivo for as long as one year. J Neurophysiol, 54(5):1346–1362, 1985.

    Google Scholar 

  17. O David and K J Friston. A neural mass model for megeeg: coupling and neuronal dynamics.NeuroImage, 20:1743–1755, 2003.

    Google Scholar 

  18. L H A Monteirony, M A Bussaby, and J G Chaui Berlinckz. Analytical results on a Wilson-Cowan neuronal network modified model. J Theor Biol, 219:83–91, 2002.

    Google Scholar 

  19. R M Borisyuk and A B. Kirillov Bifurcation analysis of a neural network model. Biol Cybern, 66(4):319–325, 1992.

    Google Scholar 

  20. J S Barlow. The Electroencephalogram Its Patterns and Origins. MIT Press, 1993.

    Google Scholar 

  21. L I Aftanas and S A Golocheikine. Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: High-resolution EEG investigation of meditation. Neurosci Lett, 310:57–60, 2001.

    Article  Google Scholar 

  22. E Coromaldi, C Bacsar-Eroglu, and M A Stadler. Langanhaltende Theta-Aktivität während tiefer Meditation: Eine Einzelfallstudie mit einem Zen-Meister. Hypnose und Kognition, 21:61–77, 2004.

    Google Scholar 

  23. E Körner, M-O Gewaltig, U Körner, A Richter, and T Rodemann. A model of computation in neocortical architecture. Neural Networks, 12:989–1005, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vejmelka, M., Fründ, I., Pillai, A. (2007). Traversing Scales: Large Scale Simulation of the Cat Cortex Using Single Neuron Models. In: Graben, P.b., Zhou, C., Thiel, M., Kurths, J. (eds) Lectures in Supercomputational Neurosciences. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73159-7_13

Download citation

Publish with us

Policies and ethics