Skip to main content

Reconciling Data Compression and Kolmogorov Complexity

  • Conference paper
Automata, Languages and Programming (ICALP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4596))

Included in the following conference series:

Abstract

While data compression and Kolmogorov complexity are both about effective coding of words, the two settings differ in the following respect. A compression algorithm or compressor, for short, has to map a word to a unique code for this word in one shot, whereas with the standard notions of Kolmogorov complexity a word has many different codes and the minimum code for a given word cannot be found effectively. This gap is bridged by introducing decidable Turing machines and a corresponding notion of Kolmogorov complexity, where compressors and suitably normalized decidable machines are essentially the same concept.

Kolmogorov complexity defined via decidable machines yields characterizations in terms of the intial segment complexity of sequences of the concepts of Martin-Löf randomness, Schnorr randomness, Kurtz randomness, and computable dimension. These results can also be reformulated in terms of time-bounded Kolmogorov complexity. Other applications of decidable machines are presented, such as a simplified proof of the Miller-Yu theorem (characterizing Martin-Löf randomness by the plain complexity of the initial segments) and a new characterization of computably traceable sequences via a natural lowness notion for decidable machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Downey, R., Merkle, W., Reimann, J.: Schnorr dimension. Mathematical Structures in Computer Science 16, 789–811 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Downey, R., Griffiths, E.: On Schnorr randomness. Journal of Symbolic Logic 69(2), 533–554 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Manuscript (2007)

    Google Scholar 

  4. Figueira, S., Nies, A., Stephan, F.: Lowness properties and approximations of the jump. In: WOLLIC 2005. Electronic Notes in Theoretical Computer Science, vol. 143, pp. 45–57. Elsevier, Amsterdam (2006)

    Google Scholar 

  5. Hitchcock, J.M.: PhD dissertation, Iowa State University (2003)

    Google Scholar 

  6. Hitchcock, J.M., Lutz, J.H.: Why computational complexity requires stricter martingales. Theory of computing systems 39(2), 277–296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kjos-Hanssen, B., Nies, A., Stephan, F.: Lowness for the class of Schnorr random reals. SIAM Journal on Computing 35(3), 647–657 (2005)

    Article  MathSciNet  Google Scholar 

  8. Lathrop, J., Lutz, J.: Recursive computional depth. Information and Computation 153, 137–172 (1999)

    Article  MathSciNet  Google Scholar 

  9. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  10. Martin-Löf, P.: The definition of random sequences. Information and Control 9(6), 602–619 (1966)

    Article  MathSciNet  Google Scholar 

  11. Miller, J.S., Yu, L.: On initial segment complexity and degrees of randomness. Transactions of the American Mathematical Society (to appear)

    Google Scholar 

  12. Nies, A.: Lowness properties and randomness. Advances in Mathematics 197, 274–305 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Schnorr, C.-P.: A unified approach to the definition of random sequences. Mathematical Systems Theory 5, 246–258 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shen, A.: Algorithmic Information Theory and Kolmogorov Complexity. Lecture notes of an introductory course. Uppsala University Technical Report 2000-034, available online at http://www.it.uu.se/publications/reports/2000-034.

  15. Stephan, F., Yu, L.: Lowness for weakly 1-generic and Kurtz-random. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 756–764. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Terwijn, S., Zambella, D.: Computable randomness and lowness. Journal of Symbolic Logic 66(3), 1199–1205 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Christian Cachin Tomasz Jurdziński Andrzej Tarlecki

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bienvenu, L., Merkle, W. (2007). Reconciling Data Compression and Kolmogorov Complexity. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73420-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73420-8_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73419-2

  • Online ISBN: 978-3-540-73420-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics