Skip to main content

Kinetic Limits for Interacting Particle Systems

  • Chapter
Entropy Methods for the Boltzmann Equation

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1916))

Abstract

In this expository article, we discuss four conjectures concerning the kinetic behavior of the hard sphere models. We then formulate four stochastic variations of the hard sphere model. The known results for these stochastic models are reviewed and some proofs are sketched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. van Beijeren, O. E. Lanford, J. L. Lebowitz and H. Spohn,Equilibrium time correlation functions in the low-density limit. J. Statist. Phys. 22 (1980), 237-257.

    Article  MATH  MathSciNet  Google Scholar 

  2. J-M. Bony, Solutions globales bornées pour les modèles discrets de l’équation de Boltzmann en dimension 1 d’espace. In Journées “Equations aux Derivées Partielles” Saint-Jean-de-Monts, 1987.

    Google Scholar 

  3. S. Caprino, A. De Masi, E. Presutti, M. Pulvirenti, A derivation of the Broadwell equation. Comm. Math. Phys. 135 (1991), 443-465.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Caprino and M. Pulvirenti, A cluster expansion approach to a one-dimensional Boltzmann equation: a validity result. Comm. Math. Phys. 166 (1995), 603-631.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Cercignani, R. Illner and M. Pulvirenti, “The Mathematical Theory of Dilute Gases”, Springer-Verlag, 1994.

    Google Scholar 

  6. R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Annals of Math. 130 (1989), 321-366.

    Article  MathSciNet  Google Scholar 

  7. R. J. DiPerna and P. L. Lions, Global solutions of Boltzmann equation and the entropy inequality, Arch. Rational Mech. Anal. 114 (1991), 47-55.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Golse, P. L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Func. Anal. 76 (1988), 110-125.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Illner and M. Pulvirenti,Global validity of the Boltzmann equation for a two and three-dimensional rare gas in vacuum, Comm. Math. Phys. 105 (1986), 189-203. Erratum and improved results, Comm. Math. Phys. 121 (1989), 143-146.

    Article  MATH  MathSciNet  Google Scholar 

  10. F. King,BBGKY hierarchy for positive potentials, Ph.D. Thesis, Dept. of Mathematics, University of California at Berkeley, (1975).

    Google Scholar 

  11. O. E. Lanford (III),Time evolution of large classical systems, in “Lecture Notes in Physics”, editor J. Moser, vol. 38, Springer-Verlag, Berlin, 1975.

    Google Scholar 

  12. P. L. Lions, Compactness in Boltzmann’s equation via Fourier integral operators and applications I, II, III, J. Math. Kyoto Univ. 34 (1994), 391-427, 429-461, 539-584.

    MATH  MathSciNet  Google Scholar 

  13. M. Pulvirenti, Global validity of the Boltzmann equation for a three-dimensional rare gas in vacuum, Comm. Math. Phys. 113 (1987), 79-85.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Resibois and M. De Leener, “Classical Kinetic Theory of Fluids”. Wiley, New York 1977.

    Google Scholar 

  15. F. Rezakhanlou, Kinetic limits for a class of interacting particle systems, Probab. Theory Related Fields,104 (1996), 97-146.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Rezakhanlou, Propagation of chaos for particle systems associated with discrete Boltzmann equation, Stochastic Processes and their Applications, 64 (1996), 55-72.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Rezakhanlou, Equilibrium fluctuations for the discrete Boltzmann equation, Duke Journal of Mathematics, 93 (1998), 257-288.

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Rezakhanlou, Large deviations from a kinetic limit, Annals of Probability, 26 (1998), 1259-1340.

    Article  MATH  MathSciNet  Google Scholar 

  19. F. Rezakhanlou, A stochastic model associated with Enskog equation and its kinetic limit, Comm. Math. Phys. 232 (2003), 327-375.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Rezakhanlou, Boltzmann-Grad limits for stochastic hard sphere model, Comm. Math. Phys. 248 (2004), 553-637.

    Article  MathSciNet  Google Scholar 

  21. F. Rezakhanlou and J. L. Tarver (III),Boltzmann-Grad limit for a particle system in continuum, Ann. Inst. Henri Poincaré ,33 (1997), 753-796.

    Article  MATH  MathSciNet  Google Scholar 

  22. H. Spohn, “Large Scale Dynamics of Interacting Particles”, Springer-Verlag, 1991.

    Google Scholar 

  23. H. Spohn, Fluctuations around the Boltzmann equation, J. Statist. Phys. 26 (1981), 285-305.

    Article  MathSciNet  Google Scholar 

  24. L. Tartar, Existence globale pour un système hyperbolique semilinéaire de la théorie cinétique des gaz, Séminaire Goulaouic-Schwartz (1975/1976), 1976.

    Google Scholar 

  25. L. Tartar, Some existence theorems for semilinear hyperbolic systems in one space variable, Technical report, University of Wisconsin-Madison, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Rezakhanlou, F. (2008). Kinetic Limits for Interacting Particle Systems. In: Golse, F., Olla, S. (eds) Entropy Methods for the Boltzmann Equation. Lecture Notes in Mathematics, vol 1916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73705-6_2

Download citation

Publish with us

Policies and ethics