Skip to main content

Tissue Engineering: Nanoscale Contacts in Cell Adhesion to Substrates

  • Chapter
Applied Scanning Probe Methods X

Part of the book series: Nano Science and Technolgy ((NANO))

  • 1112 Accesses

Abstract

Tissue engineering is the exploitation of a combination of cells, engineered materials, and suitable biochemical and mechanical factors and processes to improve or replace biological functions. A number of questions in tissue engineering involve cell dynamics and proliferation. Motility is the hallmark of life, and mechanical forces—foremost adhesion and friction forces— play a fundamental role in cell migration, cell positioning, and cell-to-cell binding and tissue stabilization when contractile forces are generated within the cell and pull the cell body forward. In living systems such as cells, force interactions are more complex than those of the inorganic world because living systems continuously adapt the forces required for their movements by processing a number of internal and external signals and by converting different forms of energy into mechanical energy. Animal cells have an average size of 10–40 μm, but the adhesion with substrates is limited to sites whose dimensions fall in the nanometer range. As a consequence, a basic understanding on the nanoscale level is needed to have satisfactory knowledge of cell frictional and adhesion fundamental properties. Different techniques has been used to measure or to investigate how living cells adhere to other cells, to the extracellular matrix, or biocompatible scaffolds in their native environment.With the advent of the scanning probe microscopy family, it has been made possible both to study adhesive fundamental properties and features simulating the interaction between living systems, and to shed light on some processes occurring in complex living matter on the nanoscale making use of the atomic force microscopy based technique. This chapter describes summarily the role of the adhesion mechanisms occurring in cell dynamics and discusses some experimental results for adhesion forces between cells and scaffolding substrates on which they spread and proliferate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langer R, Vacanti JP (1993) Science 260:920–926

    Article  CAS  Google Scholar 

  2. Peter SL et al. (1998) J Biomed Mater Res 43:422

    Article  CAS  Google Scholar 

  3. Griffith M et al. (1999) Science 286:2169

    Article  CAS  Google Scholar 

  4. Burg KJL, Porter S, Kellam J (2000) Biomaterials 21:234

    Article  Google Scholar 

  5. Palsson B, Hubbell JA, Plonsey R, Bronzino JD (2003) Tissue engineering. CRC, London

    Google Scholar 

  6. Anderson JM (1993) Cardiovasc Pathol 2:S33

    Article  Google Scholar 

  7. Bao G (2002) J Mech Phys Solids 50:2237

    Article  CAS  Google Scholar 

  8. Geiger B, Bershadsky AD (2002) Cell 110:139

    Article  CAS  Google Scholar 

  9. Safran SA, Gov N, Nicolas A, Schwarz US, Tulstry T (2005) Physica A 352:171

    Article  CAS  Google Scholar 

  10. Bray D (2001) Cell movements: from molecules to motility, 2nd edn. Garland, New York

    Google Scholar 

  11. Diambra L, Cintra LC, Schubert D, da Cinta LF (2005) http://xxx.lanl.gov/q-bio.CB/0503013

    Google Scholar 

  12. Fletcher DA, Theriot JA (2004) Phys Biol 1:T1

    Article  CAS  Google Scholar 

  13. Jones CJ, Aizawa S (1991) Microb Physiol 32:10

    Google Scholar 

  14. Purcell EM (1977) Am J Phys 45:3

    Article  Google Scholar 

  15. Wolgemuth C, Hoiczyk E, Kaiser D, Oster G (2002) Curr Biol 12:369

    Article  CAS  Google Scholar 

  16. Howard J (2001) Mechanics of motor proteins and the cytoskeleton, 1st edn. Sinauer, Sunderland

    Google Scholar 

  17. Schliwa M, Woehlke G (2003) Nature 422:759

    Article  CAS  Google Scholar 

  18. Lipowsky R, Klumpp S (2005) Physica A 352:53

    Article  CAS  Google Scholar 

  19. Schott DH, Collins RN, Bretscher A (2002) J Cell Biol 156:35

    Article  CAS  Google Scholar 

  20. Berg HC (2003) Annu Rev Biochem 72:19

    Article  CAS  Google Scholar 

  21. Kojima S, Yamamoto K, Kamagishi I, Homma M (1999) J Bacteriol 181:1927

    CAS  Google Scholar 

  22. Theriot JA (2000) Traffic 1:19

    Article  CAS  Google Scholar 

  23. Ambrose EJ (1961) Exp Cell Res 8:93

    Article  Google Scholar 

  24. Curtis ASG (1964) J Cell Biol 20:199

    Article  CAS  Google Scholar 

  25. Owen GR, Meredith DO, Gwynn I, Richards RG (2005) Eur Cells Mater 9:85

    CAS  Google Scholar 

  26. Chicurel ME, Chen CS, Ingber DE (1998) Curr Opin Cell Biol 10:232

    Article  CAS  Google Scholar 

  27. Chicurel ME, Singer RH, Meyer CJ, Ingber DE (1998) Nature 392:73

    Google Scholar 

  28. Lo CM, Wang HB, Dembo M, Wang YL (2000) Biophys J 79:144

    CAS  Google Scholar 

  29. Schwarz US, Balaban NQ, Riveline D, Addadi L, Bershadsky A, Safran SA, Geiger B (2003) Mater Sci Eng C 23:387

    Article  Google Scholar 

  30. Hu H, Sachs F (1997) J Mol Cell Cardiol 29:1511

    Article  CAS  Google Scholar 

  31. Koonce MP, Kölher J, Neujahr P, Schwartz JM, Tikhonenko I, Gerish G (1999) EMBO J 18:6786

    Article  CAS  Google Scholar 

  32. Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) J Cell Biol 153:1175

    Article  CAS  Google Scholar 

  33. Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Nature 397:50

    Article  CAS  Google Scholar 

  34. Bischofs IB, Schwarz US (2003) Proc Natl Acad Sci USA 100:9274

    Article  CAS  Google Scholar 

  35. Bischofs IB, Safran SA, Schwarz US (2004) Phys Rev E 69:012911

    Article  CAS  Google Scholar 

  36. Schwarz US, Erdmann T, Bischofs IB (2006) Biosystems 83:225

    Article  CAS  Google Scholar 

  37. Bell GI (1978) Science 200:618

    Article  CAS  Google Scholar 

  38. Ellingsen JE, Lyngstadaas SP (eds) (2003) Bio-implant interface: improving biomaterials and tissue reactions. CRC, Boca Raton

    Google Scholar 

  39. Peter SL, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1998) J Biomed Mater Res 43:422

    Article  CAS  Google Scholar 

  40. Hutmacher DW (2000) Biomaterials 21:2529

    Article  CAS  Google Scholar 

  41. Curtis A, Riehle M (2001) Phys Med Biol 46:R47

    Article  CAS  Google Scholar 

  42. Dillow AK, Lowmann AM (2002) Biomimetic materials and design. Dekker, New York

    Google Scholar 

  43. Weiss P (1945) J Exp Zool 100:353

    Article  Google Scholar 

  44. Schwarz US, Bishofs IB (2005) Med Eng Phys 27:763

    Article  Google Scholar 

  45. Wong JY, Velasco A, Rajagopalan P, Pham Q (2003) Langmuir 19:1908

    Article  CAS  Google Scholar 

  46. Meyer U, Büchter A, Wiesmann HP, Joos U, Jones DB (2005) Eur Cells Mater 9:39

    CAS  Google Scholar 

  47. Anselme K, Bigerelle M (2006) Biomaterials 27:1187

    Article  CAS  Google Scholar 

  48. Persson BNJ, Albohr O, Tartaglino U, Volokitin AI, Tosatti E (2005) J Phys 17:R1

    CAS  Google Scholar 

  49. Johansson F, Carlberg P, Danielsen N, Montelius L, Kanje M (2006) Biomaterials 27:1290

    Article  CAS  Google Scholar 

  50. Winkelmann M, Gold J, Hauert R, Kasemo B, Spencer ND, Brunette DM, Textor M (2003) Biomaterials 24:1133

    Article  CAS  Google Scholar 

  51. Curtis A, Wilkinson C (2001) Trends Biotechnol 19:97

    Article  CAS  Google Scholar 

  52. Dalby MJ, Yarwood SJ, Riehle MO, Johnstone HJH, Affrossman S, Curtis ASG (2002) Exp Cell Res 276:1

    Article  CAS  Google Scholar 

  53. Dillow A, Ochsenhirt SE, McCarthy JB, Fields GB, Tirrell M (2001) Biomaterials 22:1493

    Article  CAS  Google Scholar 

  54. Johnson KL, Kendall K, Roberts AD (1971) Proc R Soc Lond Ser A 324:301

    CAS  Google Scholar 

  55. Brandl F, Sommer F, Goepferich A (2007) Biomaterials 28:134

    CAS  Google Scholar 

  56. Ciardelli G, Rechichi A, Cerrai P, Tricoli M, Barbani N, Giusti P (2004) Mol Symp 218:261

    CAS  Google Scholar 

  57. D’Acunto M, Ciardelli G, Narducci P, Rechichi A, Giusti P (2005) Mater Lett 59:1627

    Article  CAS  Google Scholar 

  58. Cloquet D, Felsenfeld DP, Sheetz MP (1997) Cell 88:39

    Article  Google Scholar 

  59. Briunsma G, Behrisch A, Sackmann E (2000) Phys Rev E 61:4253

    Article  Google Scholar 

  60. John N, Linke M, Denker HW (1993) In Vitro Cell Dev Biol 29A:461

    Article  CAS  Google Scholar 

  61. Suter CM, Errante LE, Belotserkovsky V, Foscher PJ (1998) Cell Biol 141:227

    Article  CAS  Google Scholar 

  62. Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Biophys J 70:556

    CAS  Google Scholar 

  63. Domke J, Dannöhl S, Parak WJ, Müller O, Aicher WK, Radmacher M (2000) Colloids Surf B 19:367

    Article  CAS  Google Scholar 

  64. Evans EA (1985) Biophys J 48:185

    CAS  Google Scholar 

  65. Evans E (1995) In: Lipowsky R (ed) Handbook of biological physics. Elsevier, Amsterdam, p 723

    Google Scholar 

  66. Curtis ASG (1970) Symp Zool Soc Lond 25:335

    Google Scholar 

  67. Chen S, Springer T (1999) J Cell Biol 144:185

    Article  CAS  Google Scholar 

  68. Florin EL, Moy VT, Gaub HE (1994) Science 264:415

    Article  CAS  Google Scholar 

  69. Willemsen OH, Snel MM, van der Werf KO, de Grooth BG, Greve J, Hinterdorfer P, Gruber HJ, Schindler H, van Kooyk Y, Figdor G (1998) Biophys J 75:2220

    CAS  Google Scholar 

  70. Jena BP, HorberJKH (eds) (2002) Atomic force microscopy in cell biology. Academic, Amsterdam

    Google Scholar 

  71. Butt HJ, Cappella B, Kappl M (2005) Surf Sci Rep 59:1

    Article  CAS  Google Scholar 

  72. Henderson E, Haydon PG, Sakaguchi DS (1992) Science 257:1944

    Article  CAS  Google Scholar 

  73. Rotsch C, Braet F, Wisse E, Radmacher M (1997) Cell Biol Int 21:685

    Article  CAS  Google Scholar 

  74. Braet F, Rotsch C, Wisse E, Radmacher M (1997) Appl Phys A 66:S575

    Article  Google Scholar 

  75. A-Hassan E, Heinz WF, Antonik MD, D’Costa NP, Nagaswaran S, Schoenenberger CA, Hoh JH (1998) Biophys J 74:1564

    CAS  Google Scholar 

  76. Rotsch C, Radmacher M (2000) Biophys J 78:520

    CAS  Google Scholar 

  77. Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynmiewicz AZ (1999) Eur Biophys J 28:312

    Article  CAS  Google Scholar 

  78. Sato NK, Kataoka N, Sasaki M, Hake K (2000) J Biomech 33:127

    Article  CAS  Google Scholar 

  79. Mahaffy RE, Park S, Gerde E, Käs J, Shih CK (2004) Biophys J 86:1777

    Article  CAS  Google Scholar 

  80. Beningo KA, Wang YL (2002) Trends Cell Biol 12:79

    Article  CAS  Google Scholar 

  81. Dembo M, Wang YL (1999) Biophys J 76:2307

    CAS  Google Scholar 

  82. Balaban NQ, Schwarx US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran SA, Bershadsky AD, Addadi L, Geiger B (2001) Nature Cell Biol 3:466

    Article  CAS  Google Scholar 

  83. Wang JHC, Goldschmit-Clermont P, Wille J, Yin FCP (2001) J Biomech 34:1563

    Article  CAS  Google Scholar 

  84. McGerry JP, Murphy BP, McHugh PE (2005) J Mech Phys Solids 53:2597

    Article  Google Scholar 

  85. Yamamoto A, Mishima S, Maruyama N, Sumita M (1998) Biomaterials 19:871

    Article  CAS  Google Scholar 

  86. Athanasiou KA, Thoma BS, Lanctot DR, Shin D, Agrawal CM, LeBaron RG (1999) Biomaterials 20:2405

    Article  CAS  Google Scholar 

  87. Hoben H, Huang W, Thoma BS, LeBaron RG, Athanasiou KA (2002) Ann Biomed Eng 30:703

    Article  Google Scholar 

  88. Wu CC, Su HW, Lee CC, Tang MJ, Su FC (2005) Biochem Biophys Rese Commun 329:256

    Article  CAS  Google Scholar 

  89. Canetta E, Leyrat A, Verdier C (2003) Math Comput Model 37:1121

    Article  Google Scholar 

  90. Benoit M (2002) In: Jena BP, Horber JKH (eds) Atomic force microscopy in cell biology. Academic, Amsterdam

    Google Scholar 

  91. Thie M, Röspel R, Dettmann W, Benoit M, Ludwig M, Gaub HE, Denker HW (1998) Hum Reprod 13:3211

    Article  CAS  Google Scholar 

  92. Benoit M, Gabriel D, Gerisch G, Gaub HE (2000) Nat Cell Biol 2:313

    Article  CAS  Google Scholar 

  93. Puech PH, Poole K, Knebel D, Muller DJ (2006) Ultramicroscopy 106:637

    Article  CAS  Google Scholar 

  94. Madl J, Rhode S, Stangl H, Stockinger H, Hintrerdorfer P, Schütz GJ, Kada G (2006) Ultramicroscopy 106:645

    Article  CAS  Google Scholar 

  95. Beckmann MA, Venkataraman S, Doktycz MJ, Nataro JO, Sullivan CJ, Morrell-Falvey JL, Allison DP (2006) Ultramicroscopy 106:695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

D’Acunto, M., Giusti, P., Montevecchi, F., Ciardelli, G. (2008). Tissue Engineering: Nanoscale Contacts in Cell Adhesion to Substrates. In: Bhushan, B., Tomitori, M., Fuchs, H. (eds) Applied Scanning Probe Methods X. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74085-8_8

Download citation

Publish with us

Policies and ethics