Skip to main content

Time-Scale Invariant Audio Watermarking Based on the Statistical Features in Time Domain

  • Conference paper
Information Hiding (IH 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4437))

Included in the following conference series:

Abstract

In audio watermarking, the robustness to desynchronization attacks such as TSM (Time-Scale Modification) operations, is still an open issue. In this paper, both mathematical proof and experimental testing show that the histogram shape (represented as the relative relation in the number of samples among three different histogram bins) and the audio mean are two robust features to the TSM attacks. Accordingly, a multi-bit robust audio watermarking algorithm based on the two statistical features is proposed by modifying the histogram. The audio histogram with equal-sized bins is extracted from a selected amplitude range referred to the audio mean, and then the relative relations in the number of samples among groups of three neighboring bins are designed to carry the watermark by reassigning the number of samples in the bins. The watermarked audio signal is perceptibly similar to the original one. Simulation results demonstrated that the hidden message is very robust to the TSM, cropping, and a variety of other distortions in Stirmark Benchmark for Audio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, M.: Audio Watermarking: Features, Applications and Algorithms. In: Proc. of IEEE International Conference on Multimedia and Expo, New York, USA, vol. 2, pp. 1013–1016 (2000)

    Google Scholar 

  2. Swanson, M.D., Zhu, B., Tewfik, A.H.: Current State of the Art, Challenges and Future Directions for Audio Watermarking. In: Proc. of IEEE International Conference on Multimedia Computing and Systems, vol. 1, pp. 19–24 (1999)

    Google Scholar 

  3. Katzenbeisser, S., Petitcolas, F.A.P.(eds.): Information Hiding Techniques for Steganography and Digital Watermarking. Artech House, Inc. (2000)

    Google Scholar 

  4. International Evaluation Project for Digital Watermark Technology for Music (2000), http://www.jasrac.or.jp/watermark/ehoukoku.htm

  5. SDMI Call For Proposals, Phase II (2000), http://www.sdmi.org/download/

  6. Wu, S.Q., Huang, J.W., Huang, D., Shi, Y.Q.: Efficiently Self-Synchronized Audio Watermarking for Assured Audio Data Transmission. IEEE Trans. on Broadcasting 51, 69–76 (2005)

    Article  Google Scholar 

  7. Kirovski, D., Malvar, H.: Robust Covert Communication over A Public Audio Channel Using Spread Spectrum. In: Proc. of Information Hiding Workshop, pp. 354–368 (2001)

    Google Scholar 

  8. Tachibana, R., Shimizu, S., Nakamura, T., Kobayashi, S.: An Audio Watermarking Method Robust against Time and Frequency Fluctuation. In: Proc. of SPIE International Conference on Security and Watermarking of Multimedia Contents III, vol. 4314, pp. 104–115 (2001)

    Google Scholar 

  9. Mansour, M., Tewfik, A.: Time-Scale Invariant Audio Data Embedding. In: Proc. of IEEE International Conference on Multimedia and Expo, pp. 76–79 (2001)

    Google Scholar 

  10. Li, W., Xue, X.Y., Lu, P.Z.: Robust Audio Watermarking Based on Rhythm Region Detection. Electronics Letters 41, 218–219 (2005)

    Article  Google Scholar 

  11. Wu, C.P., Su, P.C., Kuo, C.-C.J.: Robust and Efficient Digital Audio Watermarking Using Audio Content Analysis. In: Proc. of SPIE International Conference on Security and Watermarking of Multimedia Contents II, vol. 3971, pp. 382–392 (2000)

    Google Scholar 

  12. Sylvain, B., Michiel, V.D.V., Aweke, L.: Informed Detection of Audio Watermark for Resolving Playback Speed Modifications. In: Proc. of the Multimedia and Security Workshop, pp. 117–123 (2004)

    Google Scholar 

  13. Tachibana, R.: Improving Audio Watermarking Robustness Using Stretched Patterns against Geometric Distortion. In: Proc. of IEEE International Conference on Multimedia, pp. 647–654 (2002)

    Google Scholar 

  14. Coltuc, D., Bolon, P.: Watermarking by Histogram Specification. In: Proc. of SPIE International Conference on Security and Watermarking of Multimedia Contents II, vol. 3657, pp. 252–263 (1999)

    Google Scholar 

  15. Roy, S., Chang, E.C.: Watermarking color histograms. In: Proc. of International Conference of Image Processing, vol. 4, pp. 2191–2194 (2004)

    Google Scholar 

  16. Steinebach, M., Petitcolas, F.A.P., Raynal, F., Dittmann, J., Fontaine, C., Seibel, S., Fates, N., Ferri, L.C.: StirMark Benchmark: Audio Watermarking Attacks. In: Proc. of International Conference on Information Technology: Coding and Computing, pp. 49–54 (2001)

    Google Scholar 

  17. Xiang, S.J., Huang, J.W.: Analysis of D/A and A/D Conversions in Quantization-Based Audio Watermarking. International Journal of Network Security 3, 230–238 (2006)

    Google Scholar 

  18. http://www.mp3-tech.org/programmer/sources/eaqual.tgz

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan L. Camenisch Christian S. Collberg Neil F. Johnson Phil Sallee

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiang, S., Huang, J., Yang, R. (2007). Time-Scale Invariant Audio Watermarking Based on the Statistical Features in Time Domain. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds) Information Hiding. IH 2006. Lecture Notes in Computer Science, vol 4437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74124-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74124-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74123-7

  • Online ISBN: 978-3-540-74124-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics