Skip to main content

The Potential for Extant Life in the Soils of Mars

  • Chapter
Microbiology of Extreme Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 13))

In this chapter we discuss the present state of thought on the possibility that extant life in the form of micro-organisms may exist in the soils of Mars. The Viking missions of 1976 have been the only experimental packages sent to Mars with the specific objective of searching for extant life in Martian soil samples. Landed missions since then have been geological packages that, although examining soils and rocks for minerals that might have biological origins, relied on instruments which were not designed to look specifically for living organisms. The Viking experiments provided some evidence for the possibility of life; however, the general scientific opinion (with notable exceptions; e.g., see http://mars.spherix.com/spie2/Spie2001Oxides/Spie2001-oxides.htm) has been that these experiments showed negative results (Klein 1992; Dick 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atreya SK, Wong AS, Renno NO, Farrell WM, Delory GT, Sentman DD, Cummer SA, Marshall JR, Rafkin SC, Catling DC (2006) Oxidant enhancement in Martian dust devils and storms: implications for life and habitability. Astrobiol 6:439–450

    Article  CAS  Google Scholar 

  • Bandfield JL, Glotch TD, Christensen PR (2003) Spectroscopic identification of carbonate minerals in the Martian dust. Science 301:1084–1087

    Article  PubMed  CAS  Google Scholar 

  • Benner SA, Devine KG, Matveeva LN, Powell DH (2000) The missing organic molecules on Mars. Proc Natl Acad Sci USA. 97:2425–2430

    Article  PubMed  CAS  Google Scholar 

  • Blacic JD, Dreesen DS, Mockler T (2000) Report of conceptual systems analysis of drilling systems for 200-meter-depth penetration and sampling of the Martian subsurface. Los Alamos National Laboratory, Los Alamos, New Mexico, Technical Report Number CA-VR-00–4742

    Google Scholar 

  • Boston PJ, Frederick RD, Welch SM, Werker J, Meyer TR, Sprungman B, Hildreth-Werker V, Thompson SL, Murphy DL (2003) Human utilization of subsurface extraterrestrial environments. Gravit Space Biol Bull 16:121–131

    PubMed  CAS  Google Scholar 

  • Boston PM, Ivanov MV, McKay CP (1992) On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95:300–308

    Article  PubMed  CAS  Google Scholar 

  • Brazhnikov VV, Mukhin LM, Otrostchenko VA, Fedorova RI (1971) Gas exchange (“soil breathing”) in the detection of extraterrestrial life. Life Sci Space Res 9:179–189

    PubMed  CAS  Google Scholar 

  • Buch A, Sternberg R, Meunier D, Rodier C, Laurent C, Raulin F, Vidal-Madjar C (2003) Solvent extraction of organic molecules of exobiological interest for in situ analysis of the Martian soil. J Chromatogr A 999:165–174

    Article  PubMed  CAS  Google Scholar 

  • Capone DG, Popa R, Flood B, Nealson KH (2006) Follow the nitrogen. Science 312:708–709

    Article  PubMed  CAS  Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315

    Article  PubMed  Google Scholar 

  • Christian GD, Knoblock EC, Purdy WC (1965) Instruments for detection of extraterrestrial life. Anal Chem 37:29A–35A

    Article  PubMed  CAS  Google Scholar 

  • Chyba CF, Phillips CB (2002) Europa as an abode of life. Orig Life Evol Biosph 32:47–68

    Article  PubMed  Google Scholar 

  • Clancy R, Muhleman D, Berge G (1990) Global changes in the 0–70km thermal structure of the Mars atmosphere derived from 1975–1989 microwave CO spectra. J Geophys Res 95:14543–14554

    Article  Google Scholar 

  • Cockell CS, Schuerger AC, Billi D, Friedmann EI, Panitz C (2005) Effects of a simulated Martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. Astrobiol 5:127–140

    Article  CAS  Google Scholar 

  • Crawford RL, Paszczynski A, Allenbach L (2003) Potassium ferrate [Fe(VI)] does not mediate self-sterilization of a surrogate Mars soil. BMC Microbiol 3:4–14

    Article  PubMed  Google Scholar 

  • Crawford RL, Paszczynski A, Lang Q, Cheng IF, Barnes B, Anderson TJ, Wells R, Wai C, Corti G, Allenbach L, Erwin DP, Park J, Assefi T, Mojarradi M (2001) In search of the molecules of life. Icarus 154(2):531–539

    Article  CAS  Google Scholar 

  • Crawford RL, Paszczynski A, Lang Q, Erwin DP, Allenbach L, Corti G, Anderson TJ, Cheng IF, Wai C, Barnes B, Wells R, Assefi T, Mojarradi M (2002) Measurement of microbial activity in soil by colorimetric observation of in situ dye reduction: An approach to detection of extraterrestrial life. BMC Microbiol 2:22–29

    Article  PubMed  Google Scholar 

  • de Bergh C (1995) Isotopic ratios in planetary atmospheres. Adv Space Res 15:427–440

    Article  PubMed  Google Scholar 

  • Delory GT, Farrell WM, Atreya SK, Renno NO, Wong AS, Cummer SA, Sentman DD, Marshall JR, Rafkin SC, Catling DC (2006) Oxidant enhancement in Martian dust devils and storms: storm electric fields and electron dissociative attachment. Astrobiol 6:451–462

    Article  CAS  Google Scholar 

  • Diaz B, Schulze-Makuch D (2006) Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-Irradiation conditions, and their relevance to possible Martian life. Astrobiol 6:332–347

    Article  CAS  Google Scholar 

  • Dick SJ (2006) NASA and the search for life in the universe. Endeavour 30:71–75

    Article  PubMed  Google Scholar 

  • Durry G, Amarouche N, Zeninari V, Parvitte B, Lebarbu T, Ovarlez J (2004) In situ sensing of the middle atmosphere with balloonborne near-infrared laser diodes. Spectrochim Acta A Mol Biomol Spectrosc 60:3371–3379

    Article  PubMed  CAS  Google Scholar 

  • Ehlmann BL, Chowdhury J, Marzullo TC, Collins RE, Litzenberger J, Ibsen S, Krauser WR, DeKock B, Hannon M, Kinnevan J, Shepard R, Grant FD (2005) Humans to Mars: A feasibility and cost-benefit analysis. Acta Astronaut 56:851–858

    Article  PubMed  Google Scholar 

  • Ellery A, Ball AJ, Cockell C, Dickensheets D, Edwards H, Kolb C, Lammer H, Patel M, Richter L (2005) Vanguard–A European robotic astrobiology-focused Mars sub-surface mission proposal. Acta Astronaut 56:397–407

    Article  PubMed  Google Scholar 

  • Ellery A, Wynn-Williams D (2003) Why Raman spectroscopy on Mars?—A case of the right tool for the right job. Astrobiol 3:565–579

    Article  CAS  Google Scholar 

  • Farmer J, Des Marais D, Greeley R, Landheim R, Klein H (1995) Site selection for Mars exobiology. Adv Space Res 15:157–162

    Article  PubMed  CAS  Google Scholar 

  • Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M (2004) Detection of methane in the atmosphere of Mars. Science 306:1758–1761

    Article  PubMed  CAS  Google Scholar 

  • Fox A (2002) Chemical markers for bacteria in extraterrestrial samples. Anat Rec 268:180–185

    Article  PubMed  CAS  Google Scholar 

  • Friedmann EI, Ocampo-Friedmann R (1984) The Antarctic cryptoendolithic ecosystem: Relevance to exobiology. Orig Life 14:771–776

    Article  PubMed  CAS  Google Scholar 

  • Gaill F (1993) Aspects of life development at deep sea hydrothermal vents. FASEB J 7:558–565

    PubMed  CAS  Google Scholar 

  • Gellert R, Rieder R, Anderson RC, Bruckner J, Clark BC, Dreibus G, Economou T, Klingelhofer G, Lugmair GW, Ming DW, Squyres SW, D’Uston C, Wanke H, Yen A, Zipfel J (2004) Chemistry of rocks and soils in Gusev Crater from the alpha particle x-ray spectrometer. Science 305:829–832

    Article  PubMed  CAS  Google Scholar 

  • Goetz W, Bertelsen P, Binau CS, Gunnlaugsson HP, Hviid SF, Kinch KM, Madsen DE, Madsen MB, Olsen M, Gellert R, Klingelhofer G, Ming DW, Morris RV, Rieder R, Rodionov DS, de Souza PA Jr, Schroder C, Squyres SW, Wdowiak T, Yen A (2005) Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust. Nature 436:62–65

    Article  PubMed  CAS  Google Scholar 

  • Hagen CA, Hawrylewicz EJ, Anderson BT, Cephus ML (1970) Effect of ultraviolet on the survival of bacteria airborne in simulated Martian dust clouds. Life Sci Space Res 8:53–58

    PubMed  CAS  Google Scholar 

  • Haskin LA, Wang A, Jolliff BL, McSween HY, Clark BC, Des Marais DJ, McLennan SM, Tosca NJ, Hurowitz JA, Farmer JD, Yen A, Squyres SW, Arvidson RE, Klingelhofer G, Schroder C, de Souza PA Jr, Ming DW, Gellert R, Zipfel J, Bruckner J, Bell JF III, Herkenhoff K, Christensen PR, Ruff S, Blaney D, Gorevan S, Cabrol NA, Crumpler L, Grant J, Soderblom L (2005) Water alteration of rocks and soils on Mars at the Spirit Rover site in Gusev Crater. Nature 436:66–69

    Article  PubMed  CAS  Google Scholar 

  • Hutt LD, Glavin DP, Bada JL, Mathies RA (1999) Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration. Anal Chem 71:4000–4006

    Article  PubMed  CAS  Google Scholar 

  • Hynek BM (2004) Implications for hydrologic processes on Mars from extensive bedrock outcrops throughout Terra Meridiani. Nature 431:156–159

    Article  PubMed  CAS  Google Scholar 

  • Imshenetskii AA, Evdokimova MD (1975) Determination of optical activity of the growth medium as a method for detection of extraterrestrial life. Mikrobiol 44:1030–1033

    CAS  Google Scholar 

  • Imshenetsky AA, Evdokimova MD, Sotnikov GG (1976) On methods of detection of extraterrestrial life. Life Sci Space Res 14:345–349

    PubMed  CAS  Google Scholar 

  • Irwin LN, Schulze-Makuch D (2001) Assessing the plausibility of life on other worlds. Astrobiol 1:143–160

    Article  CAS  Google Scholar 

  • Jakosky BM, Shock EL (1998) The biological potential of Mars, the early Earth, and Europa. J Geophys Res 103:19359–19364

    Article  PubMed  CAS  Google Scholar 

  • Juck DF, Whissell G, Steven B, Pollard W, McKay CP, Greer CW, Whyte LG (2005) Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian High Arctic. Appl Environ Microbiol 71:1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki Y (1994) Development of detection system of extraterrestrial microorganisms. Biol Sci Space 8:103–113

    Article  PubMed  CAS  Google Scholar 

  • Kelley LM, Meyer ED, Zumberge JE, Bandurski EL, Nagy B (1975) Stereoisomeric specificity and soil gas disequilibria: Implications for Martian life detection. Appl Microbiol 29:229–233

    PubMed  CAS  Google Scholar 

  • Kendrick MG, Kral TA (2006) Survival of methanogens during desiccation: Implications for life on Mars. Astrobiol 6:546–551

    Article  CAS  Google Scholar 

  • Klein HP (1992) The Viking biology experiments: Epilogue and prologue. Orig Life Evol Biosph 21:255–261

    Article  PubMed  CAS  Google Scholar 

  • Knacke RF (2003) Possibilities for the detection of microbial life on extrasolar planets. Astrobiol 3:531–541

    Article  CAS  Google Scholar 

  • Kobayashi K, Ito Y, Moroi A, Edazawa Y, Kaneko T, Takano Y (2004) Detection of biosphere frontier by using phosphatase activity. Biol Sci Space 18:144–145

    Article  PubMed  Google Scholar 

  • Kohshima S (2000) Psycrophilic organisms in snow and ice. Biol Sci Space 14:353–362

    Article  PubMed  CAS  Google Scholar 

  • Kounaves SP (2003) Electrochemical approaches for chemical and biological analysis on Mars. Chemphyschem 4:162–168

    Article  PubMed  CAS  Google Scholar 

  • Kral TA, Bekkum CR, McKay CP (2004) Growth of methanogens on a Mars soil simulant. Orig Life Evol Biosph 34:615–626

    Article  PubMed  CAS  Google Scholar 

  • Krasnopolsky VA, Maillard JP, Owen TC (2004) Detection of methane in the Martian atmosphere: Evidence for life? Icarus 172:537–547

    Article  CAS  Google Scholar 

  • Kuhlman KR, Fusco WG, La Duc MT, Allenbach LB, Ball CL, Kuhlman GM, Anderson RC, Erickson IK, Stuecker T, Benardini J, Strap JL, Crawford RL (2005) Diversity of microorganisms within rock varnish in the Whipple Mountains, California. Appl Environ Microbiol 72:1708–1715

    Article  CAS  Google Scholar 

  • Lang Q, Cheng IF, Wai C, Paszczynski A, Crawford RL, Barnes B, Anderson TJ, Wells R, Corti G, Allenbach L, Erwin DP, Assefi T, Mojarradi M (2001) Supercritical fluid extraction and HPLC-DAD-ECD detection of signature redox compounds from sand and soil samples. Analyt Biochem 301:225–234

    Article  CAS  Google Scholar 

  • Lehman RM, Roberto FF, Earley D, Bruhn DF, Brink SE, O’Connell SP, Delwiche ME, Colwell FS (2001) Attached and unattached bacterial communities in a 120-meter corehole in an acidic, crystalline rock aquifer. Appl Environ Microbiol 67:2095–2106

    Article  PubMed  CAS  Google Scholar 

  • Levin GV, Heim AH, Thompson MF, Beem DR, Horowitz NH (1964) “Gulliver”, an experiment for extraterrestrial life detection and analysis. Life Sci Space Res 2:124–132

    PubMed  CAS  Google Scholar 

  • Lobitz B, Wood BL, Averner MM, McKay CP (2001) Use of spacecraft data to derive regions on Mars where liquid water would be stable. Proc Natl Acad Sci USA 98:2132–2137

    Article  PubMed  CAS  Google Scholar 

  • Madden ME, Bodnar RJ, Rimstidt JD (2004) Jarosite as an indicator of water-limited chemical weathering on Mars. Nature 431:821–823

    Article  PubMed  CAS  Google Scholar 

  • Mancinelli RL (2003) Planetary protection and the search for life beneath the surface of Mars. Adv Space Res 31:103–107

    Article  PubMed  Google Scholar 

  • Mancinelli RL, Banin A (2003) Where is the nitrogen on Mars? Internat J Astrobiol 2:217–225

    Article  CAS  Google Scholar 

  • McCollom TM (1999) Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J Geophys Res 104(E12):30729–30742

    Article  CAS  Google Scholar 

  • Miroshnichenko ML, Bonch-Osmolovskaya EA (2006) Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. Extremophiles 10:85–96

    Article  PubMed  Google Scholar 

  • Mitchell DL, Lin RP, Mazelle C, Reme H, Cloutier PA, Connerney JEP, Acuna MH, Ness NF (2001) Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer. J Geophys Res 106:23, 419–423, 427

    Article  Google Scholar 

  • Muller AW (2003) Finding extraterrestrial organisms living on thermosynthesis. Astrobiol 3:555–564

    Article  CAS  Google Scholar 

  • Mumma MJ, Novak RE, DiSanti MA, Bonev BP, Dello Russo N (2004) Detection and mapping of methane and water on Mars. DPS Meeting 36, American Astronomical Society, Washington DC Abstract 26.02

    Google Scholar 

  • Nealson KH, Tsapin A, Storrie-Lombardi M (2002) Searching for life in the universe: unconventional methods for an unconventional problem. Int Microbiol 5:223–230

    Article  PubMed  CAS  Google Scholar 

  • Nussinov M D, Lysenko SV, Kozlovskii MYu, Pogodin YuS (1992) An approach to the detection of microbe life in planetary environments through charge-coupled devices. J Br Interplanet Soc 45:13–14

    PubMed  CAS  Google Scholar 

  • Onstott TC, McGown D, Kessler J, Lollar BS, Lehmann KK, Clifford SM (2006) Martian CH4: Sources, flux, and detection. Astrobiol 6:377–395

    Article  CAS  Google Scholar 

  • Ostroumov V (1995) A physical and chemical characterization of Martian permafrost as a possible habitat for viable microorganisms. Adv Space Res 15:229–236

    Article  PubMed  CAS  Google Scholar 

  • Palmer PT, Limero TF (2001) Mass spectrometry in the U.S. space program: Past, present, and future. J Am Soc Mass Spectrom 12:656–675

    Article  PubMed  CAS  Google Scholar 

  • Peters JW, Fisher K, Dean DR (1995) Nitrogenase structure and function: A biochemical-genetic perspective. Ann Rev Microbiol 49:335–366

    Article  CAS  Google Scholar 

  • Pietrogrande MC, Zampolli MG, Dondi F, Szopa C, Sternberg R, Buch A, Raulin F (2005) In situ analysis of the Martian soil by gas chromatography: Decoding of complex chromatograms of organic molecules of exobiological interest. J Chromatogr A 1071:255–261

    Article  PubMed  CAS  Google Scholar 

  • Pollock GE, Day R, Kinsey S, Miller SL (1977) Detection of optical asymmetry in amino acids by gas chromatography for extraterrestrial space exploration: Results of a new soil processing scheme with breadboard instrumentation. Life Sci Space Res 15:27–34

    PubMed  CAS  Google Scholar 

  • Quinn R, Zent AP, McKay CP (2006) The photochemical stability of carbonates on Mars. Astrobiol 6:581–591

    Article  CAS  Google Scholar 

  • Reichhardt T (2005) Mars exploration: Going underground. Nature 435:266–267

    Article  PubMed  CAS  Google Scholar 

  • Rieder R, Economou T, Wanke H, Turkevich A, Crisp J, Bruckner J, Dreibus G, McSween HY Jr (1997) The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. Science 278:1771–1774

    Article  PubMed  CAS  Google Scholar 

  • Rieder R, Gellert R, Anderson RC, Bruckner J, Clark BC, Dreibus G, Economou T, Klingelhofer G, Lugmair GW, Ming DW, Squyres SW, d’Uston C, Wanke H, Yen A, Zipfel J (2004) Chemistry of rocks and soils at Meridiani Planum from the alpha particle x-ray spectrometer. Science 306:1746–1749

    Article  PubMed  CAS  Google Scholar 

  • Rodier C, Vandenabeele-Trambouze O, Sternberg R, Coscia D, Coll P, Szopa C, Raulin F, Vidal-Madjar C, Cabane M, Israel G, Grenier-Loustalot MF, Dobrijevic M, Despois D (2001) Detection of Martian amino acids by chemical derivatization coupled to gas chromatography: In situ and laboratory analysis. Adv Space Res 27:195–199

    Article  PubMed  CAS  Google Scholar 

  • Rother M, Metcalf WW (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: An unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA 101:16929–16934

    Article  PubMed  CAS  Google Scholar 

  • Rothschild LJ (1990) Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. Icarus 88:246–260

    Article  PubMed  CAS  Google Scholar 

  • Schilling G (2005) Space science. Europe trumpets successes on Mars and Titan. Science 310:1598

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer MH, Wittmeyer J, Avci R, Pincus S (2005) Experimental support for an immunological approach to the search for life on other planets. Astrobiol 5:30–47

    Article  CAS  Google Scholar 

  • Simmonds PG (1970) Whole microorganisms studied by pyrolysis-gas chromatography-mass spectrometry: Significance for extraterrestrial life detection experiments. Appl Microbiol 20:567–572

    PubMed  CAS  Google Scholar 

  • Soffen GA (1976) Scientific results of the Viking missions. Science 194:1274–1276

    Article  PubMed  CAS  Google Scholar 

  • Sotnikov GG (1970) Detection of iron-porphyrin proteins with a biochemiluminescent method in search of extraterrestrial life. Life Sci Space Res 8:90–98

    PubMed  CAS  Google Scholar 

  • Steven B, Leveille R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267

    Article  PubMed  Google Scholar 

  • Thiemann W (1975) Is the detection of optical activity in extraterrestrial samples a safe indicator for life? Life Sci Space Res 13:63–69

    PubMed  CAS  Google Scholar 

  • Thomas DJ, Sullivan SL, Price AL, Zimmerman SM (2005) Common freshwater cyanobacteria grow in 100% CO2. Astrobiol 5:66–74

    Article  CAS  Google Scholar 

  • Titus TN, Kieffer HH, Christensen PR (2003) Exposed water ice discovered near the south pole of Mars. Science 299:1048–1051

    Article  PubMed  CAS  Google Scholar 

  • Tobin KJ, Onstott TC, DeFlaun MF, Colwell FS, Fredrickson J (1999) In situ imaging of microorganisms in geologic material. J Microbiol Meth 37:201–213

    Article  CAS  Google Scholar 

  • Tung HC, Bramall NE, Price PB (2005) Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc Natl Acad Sci USA 102:18292–18296

    Article  PubMed  CAS  Google Scholar 

  • Van Dongen HPA, Miller JD, Levin VG, Straat PA (2005) A circadian biosignature in the labeled release data from Mars? In: Hoover RB, Levin GV, Rozanov AY, Gladstone GR (eds) Instruments, Methods, and Missions for Astrobiology, SPIE Proceedings, August 2005, vol. 5906, 59060C, Astrobiology and Planetary Missions. The International Society for Optical Engineering, Bellingham WA

    Google Scholar 

  • Varnes ES, Jakosky BM, McCollom TM (2003) Biological potential of Martian hydrothermal systems. Astrobiol 3:407–414

    Article  CAS  Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gomez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398

    Article  PubMed  Google Scholar 

  • Webster CR (2005) Measuring methane and its isotopes 12CH4, 13CH4, and CH3D on the surface of Mars with in situ laser spectroscopy. Appl Opt 44:1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Weiss BP, Kim SS, Kirschvink JL, Kopp RE, Sankaran M, Kobayashi A, Komeili AM (2004) Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proc Natl Acad Sci USA 101:8281–8284

    Article  PubMed  CAS  Google Scholar 

  • Weiss BP, Yung YL, Nealson KH (2000) Atmospheric energy for subsurface life on Mars? Proc Natl Acad Sci USA 97:1395–1399

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Ramian GJ, Galan JF, Savvidis PG, Scopatz AM, Birge RR, Allen SJ, Plaxco KW (2003) Terahertz circular dichroism spectroscopy: A potential approach to the in situ detection of life’s metabolic and genetic machinery. Astrobiol 3:489–504

    Article  CAS  Google Scholar 

  • Yen AS, et al (2005) An integrated view of the chemistry and mineralogy of Martian soils. Nature 436:49–54 Erratum in: (2005) Nature 436(7052):881

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crawford, R.L., Newcombe, D.A. (2008). The Potential for Extant Life in the Soils of Mars. In: Dion, P., Nautiyal, C.S. (eds) Microbiology of Extreme Soils. Soil Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74231-9_11

Download citation

Publish with us

Policies and ethics