Skip to main content

Finding All Attractive Train Connections by Multi-criteria Pareto Search

  • Conference paper
Algorithmic Methods for Railway Optimization

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4359))

Abstract

We consider efficient algorithms for timetable information in public transportation systems under multiple objectives like, for example, travel time, ticket costs, and number of interchanges between different means of transport. In this paper we focus on a fully realistic scenario in public railroad transport as it appears in practice while most previous work studied only simplified models.

Algorithmically this leads to multi-criteria shortest path problems in very large graphs. With several objectives the challenge is to find all connections which are potentially attractive for customers. To meet this informal goal we introduce the notion of relaxed Pareto dominance. Another difficulty arises from the fact that due to the complicated fare regulations even the single-criteria optimization problem of finding cheapest connections is intractable. Therefore, we have to work with fare estimations during the search for good connections.

In a cooperation with Deutsche Bahn Systems we realized this scenario in a prototypal implementation called PARETO based on a time-expanded graph model. Computational experiments with our PARETO server demonstrate that the current central server of Deutsche Bahn AG often fails to give optimal recommendations for different user groups. In contrast, an important feature of the PARETO server is its ability to provide many attractive alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brodal, G.S., Jacob, R.: Time-dependent networks as models to achieve fast exact time-table queries. In: Proceedings 3rd Workshop on Algorithmic Methods and Models for Optimization of Railways (ATMOS 2003). Electronic Notes in Theoretical Computer Science, vol. 92, pp. 3–15. Elsevier, Amsterdam (2003)

    Google Scholar 

  2. Ehrgott, M., Gandibleux, X.: An annotated biliography of multiobjective combinatorial optimization. OR Spektrum 22, 425–460 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Ehrgott, M., Gandibleux, X. (eds.): Multiple Criteria Optimization: State of the Art Annotated Bibliographic Survey. Kluwer Academic Publishers, Boston (2002)

    Google Scholar 

  4. Hansen, P.: Bicriteria path problems. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Applications. Lecture Notes in Economics and Mathematical Systems, vol. 177, pp. 109–127. Springer, Berlin (1979)

    Google Scholar 

  5. Mote, J., Murthy, I., Olson, D.L.: A parametric approach to solving bicriterion shortest path problems. European Journal of Operations Research 53, 81–92 (1991)

    Article  MATH  Google Scholar 

  6. Möhring, R.H.: Verteilte Verbindungssuche im öffentlichen Personenverkehr: Graphentheoretische Modelle und Algorithmen. In: Angewandte Mathematik - insbesondere Informatik, Vieweg, pp. 192–220 (1999)

    Google Scholar 

  7. Müller-Hannemann, M., Schnee, M., Weihe, K.: Getting train timetables into the main storage. In: Proceedings 3rd Workshop on Algorithmic Methods and Models for Optimization of Railways (ATMOS 2002). Electronic Notes in Theoretical Computer Science, vol. 66, Elsevier, Amsterdam (2002)

    Google Scholar 

  8. Müller-Hannemann, M., Weihe, K.: Pareto shortest paths is often feasible in practice. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001. LNCS, vol. 2141, pp. 185–198. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Mehlhorn, K., Ziegelmann, M.: Resource constrained shortest paths. In: Paterson, M.S. (ed.) ESA 2000. LNCS, vol. 1879, pp. 326–337. Springer, Heidelberg (2000)

    Google Scholar 

  10. Nachtigal, K.: Time depending shortest-path problems with applications to railway networks. European Journal of Operations Research 83, 154–166 (1995)

    Article  Google Scholar 

  11. Orda, A., Rom, R.: Shortest paths and minimum-delay algorithms in networks with time-dependent edge-length. Journal of the ACM 37(3), 607–625 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Orda, A., Rom, R.: Minimum weight paths in time dependent networks. Networks 21, 295–319 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pallottino, S., Scutellà, M.G.: Equilibrium and advanced transportation modelling. ch. 11. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  14. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Towards realistic modeling of time-table information through the time-dependent approach. In: Proceedings 3rd Workshop on Algorithmic Methods and Models for Optimization of Railways (ATMOS 2003). Electronic Notes in Theoretical Computer Science, vol. 92, pp. 85–103. Elsevier, Amsterdam (2003)

    Google Scholar 

  15. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Experimental comparison of shortest path approaches for timetable information. In: Proceedings 6th Workshop on Algorithm Engineering and Experiments and the 1st Workshop on Analytic Algorithmics and Combinatorics, SIAM, pp. 88–99 (2004)

    Google Scholar 

  16. Skriver, A.J.V., Andersen, K.A.: A label correcting approach for solving bicriterion shortest path problems. Computers and Operations Research 27, 507–524 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case study from public railroad transport. ACM Journal of Experimental Algorithmics, 5(12) (2000)

    Google Scholar 

  18. Schulz, F., Wagner, D., Zaroliagis, C.: Using multilevel graphs for timetable information in railway systems. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002)

    Google Scholar 

  19. Theune, D.: Robuste und effiziente Methoden zur Lösung von Wegproblemen. Teubner Verlag, Stuttgart (1995)

    Google Scholar 

  20. Warburton, A.: Approximation of pareto optima in multiple-objective shortest path problems. Operations Research 35, 70–79 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Geraets Leo Kroon Anita Schoebel Dorothea Wagner Christos D. Zaroliagis

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller-Hannemann, M., Schnee, M. (2007). Finding All Attractive Train Connections by Multi-criteria Pareto Search. In: Geraets, F., Kroon, L., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds) Algorithmic Methods for Railway Optimization. Lecture Notes in Computer Science, vol 4359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74247-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74247-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74245-6

  • Online ISBN: 978-3-540-74247-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics