Skip to main content

Conjugate Gamma Markov Random Fields for Modelling Nonstationary Sources

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4666))

Abstract

In modelling nonstationary sources, one possible strategy is to define a latent process of strictly positive variables to model variations in second order statistics of the underlying process. This can be achieved, for example, by passing a Gaussian process through a positive nonlinearity or defining a discrete state Markov chain where each state encodes a certain regime. However, models with such constructs turn out to be either not very flexible or non-conjugate, making inference somewhat harder. In this paper, we introduce a conjugate (inverse-) gamma Markov Random field model that allows random fluctuations on variances which are useful as priors for nonstationary time-frequency energy distributions. The main idea is to introduce auxiliary variables such that full conditional distributions and sufficient statistics are readily available as closed form expressions. This allows straightforward implementation of a Gibbs sampler or a variational algorithm. We illustrate our approach on denoising and single channel source separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attias, H.: Independent factor analysis. Neural Computation 11(4), 803–851 (1999)

    Article  Google Scholar 

  2. Cemgil, A.T., Fevotte, C., Godsill, S.J.: Variational and Stochastic Inference for Bayesian Source Separation. Digital Signal Processing (in print, 2007)

    Google Scholar 

  3. Cichocki, A., Amari, S.I: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, revised version edition. Wiley, Chichester (2003)

    Google Scholar 

  4. Févotte, C., Daudet, L., Godsill, S.J., Torrésani, B.: Sparse regression with structured priors: Application to audio denoising. In: Proc. ICASSP, Toulouse, France (May 2006)

    Google Scholar 

  5. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)

    Google Scholar 

  6. Knuth, K.H.: Bayesian source separation and localization. In: SPIE 1998: Bayesian Inference for Inverse Problems, San diego, pp. 147–158 (July 1998)

    Google Scholar 

  7. Liu, J.S.: Monte Carlo strategies in scientific computing. Springer, Heidelberg (2004)

    Google Scholar 

  8. MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  9. Miskin, J., Mackay, D.: Ensemble learning for blind source separation. In: Roberts, S.J., Everson, R.M. (eds.) Independent Component Analysis, pp. 209–233. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  10. Reyes-Gomez, M., Jojic, N., Ellis, D.: Deformable spectrograms. In: AI and Statistics Conference, Barbados (2005)

    Google Scholar 

  11. Rowe, D.B.: A Bayesian approach to blind source separation. Journal of Interdisciplinary Mathematics 5(1), 49–76 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Shepard, N. (ed.): Stochastic Volatility, Selected Readings. Oxford University Press, Oxford (2005)

    Google Scholar 

  13. Wainwright, M., Jordan, M.I.: Graphical models, exponential families, and variational inference. Technical Report 649, Department of Statistics, UC Berkeley (September 2003)

    Google Scholar 

  14. Wolfe, P.J., Godsill, S.J., Ng, W.J.: Bayesian variable selection and regularisation for time-frequency surface estimation. Journal of the Royal Statistical Society (2004)

    Google Scholar 

  15. Wolpert, R.L., Ickstadt, K.: Poisson/gamma random field models for spatial statistics. Biometrica (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mike E. Davies Christopher J. James Samer A. Abdallah Mark D Plumbley

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cemgil, A.T., Dikmen, O. (2007). Conjugate Gamma Markov Random Fields for Modelling Nonstationary Sources. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74494-8_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74493-1

  • Online ISBN: 978-3-540-74494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics