Skip to main content

An Evolutionary Neural Network Based Tracking Control of a Human Arm in the Sagittal Plane

  • Conference paper
Advances in Computation and Intelligence (ISICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4683))

Included in the following conference series:

Abstract

In this paper trajectory tracking control of a human arm moving in sagittal plane is investigated. The arm is described by a musculoskeletal model with two degrees of freedom and six muscles, and the control signal is applied directly in muscle space. To design the intelligent controller, an evolutionary diagonal recurrent neural network (EDRNN) is integrated with proper performance indices, which a genetic algorithm (GA) and evolutionary program (EP) strategy are effectively combined with the diagonal neural network (DRNN). The hybrid GA with EP strategy is applied to optimize the DRNN structure and a dynamic back-propagation algorithm (DBP) is used for training the network weights. The effectiveness of the control scheme is demonstrated through a simulated case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schouten, A.C., de Vlugt, E., van der Helm, F.C.T., Brouwn, G.G.: Optimal Posture Control of a Musculo-Skeletal Arm Model. Biol. Cybern. 84, 143–152 (2001)

    Article  Google Scholar 

  2. Brown, I.E., Cheng, E.J., Leob, G.: Measured and Modeled Properties of Mammalian Skeletal Muscle. II. the Effects of Stimulus Frequency on Force-Length and Force-Velocity Relationships. J. of Muscle Research and Cell Motility 20, 627–643 (1999)

    Article  Google Scholar 

  3. Chaiyaratana, N., Zalzala, A.M.S.: Hybridisations of Neural Networks and Genetic Algorithms for Time-Optimal Control. In: Angeline, P.J. (ed.) Proceedings of the 1999 Congress on Evolutionary Computation, vol. 1, pp. 389–396. IEEE Press, New Jersey (1999)

    Chapter  Google Scholar 

  4. Ku, C.-C., Lee, K.Y.: Diagonal Recurrent Neural Networks for Dynamic System Control. IEEE Trans. on Neural Networks 6, 144–156 (1995)

    Article  Google Scholar 

  5. Franklin, D.W., Milner, T.E.: Adaptive Control of Stiffness to Stabilize Hand Position with Large Loads. Exp. Brain Res. 152, 211–220 (2003)

    Article  Google Scholar 

  6. Cheng, E.J., Brown, I.E., Loeb, G.E.: Virtual Muscle: a Computational Approach to Understanding the Effects of Muscle Properties on Motor Control. Journal of Neuroscience Methods 101, 117–130 (2000)

    Article  Google Scholar 

  7. Hussenin, S.B., Jamaluddin, H., Mailah, M., Zalzala, A.M.S.: A Hybrid Intelligent Active Force Controller for Robot Arms Using Evolutionary Neural Networks. In: Angeline, P.J. (ed.) Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 117–130. IEEE Press, New Jersey (2000)

    Chapter  Google Scholar 

  8. Nakazono, K., Katagiri, M., Kinjo, H., Yamamoto, T.: Force and Position Control of Robot Manipulator Using Neurocontroller with GA based Training. In: Nakauchi, Y. (ed.) Proceedings of 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation, vol. 3, pp. 1354–1357. IEEE Press, New Jersey (2003)

    Chapter  Google Scholar 

  9. Katayama, M., Inoue, S., Kawato, M.: A Strategy of Motor Learning Using Adjustable Parameters for Arm Movement. In: Chang, H.K., Zhang, Y.T. (eds.) Proceeding of 20th IEEE EMBS. IEEE Engineering in Medicine and Biology Society, vol. 20, pp. 2370–2373. IEEE Press, New Jersey (1998)

    Google Scholar 

  10. Lan, N.: Analysis of an Optimal Control Model of Multi-Joint Arm Movements. Biol. Cybern. 207–117 (1997)

    Google Scholar 

  11. Sanner, R.M., Kosha, M.: A Mathematical Model of the Adaptive Control of Human Arm Motions. Biol. Cybern. 80, 369–382 (1999)

    Article  MATH  Google Scholar 

  12. liu, S., Wang, Y., Huang, J.: Neural network based posture control of a human arm model in the sagittal plane. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3973, pp. 792–798. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Stroeve, S.H.: Impedance Characteristics of a Neuromusculoskeletal Model of the Human Arm. I. Posture Control. Biol. Cybern. 81, 475–494 (1999)

    Article  MATH  Google Scholar 

  14. Li, W., TOdorov, E.: Iterative Quadratic Regulator Design for Nonliear Biological Movement system. In: Filipe, J. (ed.) Proceedings of the 1st International Conference on Informatica in Control, Automation and Robotics, vol. 1, pp. 222–229. Kluwer Academic Publisher, Netherlands (2004)

    Google Scholar 

  15. Li, W., Todorov, E., Pan, X.: Hierarchical Optimal Control of Redundant Biomechanical Systems. In: Hudson, D., Liang, Z.P. (eds.) Proceeding of 26th IEEE EMBS. IEEE Engineering in Medicine and Biology Society, vol. 26, pp. 4618–4621. IEEE Press, New Jersey (2004)

    Google Scholar 

  16. Todorov, E., Li, W.: A Generalized Iterative LQG Method for Locally-optiml Feedback Control of Constrained Nonlinear Stochastic Systems. In: Suhada, J., Balakrishnan, S.N. (eds.) Proceeding of 2005 ACC. American Control Conference, vol. 1, pp. 300–306. IEEE Press, New Jersey (2005)

    Google Scholar 

  17. Papaxanthis, C., Pozzo, T., McIntyre, J.: Arm End-point Trajectories Under Normal and Micro-gravity Environments. Acta Astronautica 43, 153–161 (1998)

    Article  Google Scholar 

  18. Papaxanthis, C., Pozzo, T., Schieppati, M.: Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed. Exp. Brain Res. 148, 498–503 (2003)

    Google Scholar 

  19. Kambara, H., Kim, K., Shin, D., et al.: Motor Control-Learning Model for Reaching Movements. In: 2006 International Joint Conference on Neural Networks, pp. 555–562 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lishan Kang Yong Liu Sanyou Zeng

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, S., Wang, Y., Zhu, Q. (2007). An Evolutionary Neural Network Based Tracking Control of a Human Arm in the Sagittal Plane. In: Kang, L., Liu, Y., Zeng, S. (eds) Advances in Computation and Intelligence. ISICA 2007. Lecture Notes in Computer Science, vol 4683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74581-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74581-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74580-8

  • Online ISBN: 978-3-540-74581-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics