Skip to main content

Universality, Reducibility, and Completeness

  • Conference paper
Machines, Computations, and Universality (MCU 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4664))

Included in the following conference series:

  • 614 Accesses

Abstract

Relations between such concepts as reducibility, universality, hardness, completeness, and deductibility are studied. The aim is to build a flexible and comprehensive theoretical foundations for different techniques and ideas used in computer science. It is demonstrated that: concepts of universality of algorithms and classes of algorithms are based on the construction of reduction of algorithms; concepts of hardness and completeness of problems are based on the construction of reduction of problems; all considered concepts of reduction, as well as deduction in logic are kinds of reduction of abstract properties. The Church-Turing Thesis, which states universality of the class of all Turing machines, is considered in a mathematical setting as a theorem proved under definite conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, T., Gill, J., Solovey, R.: Relativizations of the P =? NP question. SIAM Journal of Computing 4, 431–442 (1975)

    Article  MATH  Google Scholar 

  2. Bennett, C.N., Landauer, R.: On Fundamental Physical Limits of Computation. Scientific American 7, 48–56 (1985)

    Article  Google Scholar 

  3. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays. Academic Press, London (1982)

    MATH  Google Scholar 

  4. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity of Real Computation. Springer, New York (1998)

    Google Scholar 

  5. Boker, U.: Comparing Computational Power. PhD thesis, Tel-Aviv University (2004)

    Google Scholar 

  6. Boker, U., Dershowitz, N.: A Formalization of the Church-Turing Thesis for State-Transition Models, http://www.cs.tau.ac.il/

  7. Boker, U., Dershowitz, N.: How to Compare the Power of Computational Models. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 54–64. Springer, Heidelberg (2005)

    Google Scholar 

  8. Burgin, M.: Multiple computations and Kolmogorov complexity for such processes (translated from Russian). Notices of the Academy of Sciences of the USSR 269(4), 793–797 (1983)

    MathSciNet  Google Scholar 

  9. Burgin, M.: Composition of operators in a multidimensional structured model of parallel computations and systems (translated from Russian). Cybernetics and System Analysis 19(3), 340–350 (1984)

    Article  MathSciNet  Google Scholar 

  10. Burgin, M.: Abstract Theory of Properties and Sociological Scaling (in Russian). Expert Evaluation in Sociological Studies. Kiev, 243–264 (1990)

    Google Scholar 

  11. Burgin, M.: Universal limit Turing machines (translated from Russian). Notices of the Russian Academy of Sciences 325(4), 654–658 (1992)

    Google Scholar 

  12. Burgin, M.: How We Know What Technology Can Do. Communications of the ACM 44(11), 82–88 (2001)

    Article  Google Scholar 

  13. Burgin, M.: Superrecursive Algorithms. Springer, New York (2005)

    Google Scholar 

  14. Burgin, M.: Measuring Power of Algorithms, Programs, and Automata. In: Shannon, S. (ed.) Artificial Intelligence and Computer Science, pp. 1–61. Nova Science Publishers, New York (2005)

    Google Scholar 

  15. Burgin, M.S., Borodyanskii, Y.M.: Alphabetic Operators and Algorithms. Cybernetics and System Analysis 29(3), 42–57 (1993)

    MathSciNet  Google Scholar 

  16. Burton, D.M.: The History of Mathematics. McGrow Hill Co., New York (1997)

    MATH  Google Scholar 

  17. Dreyfus, H.L.: What Computers Can’t Do - The Limits of Artificial Intelligence. Harper and Row (1979)

    Google Scholar 

  18. Eberbach, E., Goldin, D., Wegner, P.: Turing’s Ideas and Models of Computation. In: Teuscher, C. (ed.) Alan Turing: Life and Legacy of a Great Thinker, pp. 159–194. Springer, Heidelberg (2004)

    Google Scholar 

  19. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison Wesley, Boston, San Francisco, New York (2001)

    MATH  Google Scholar 

  20. Lewis, J.P.: Limits to Software Estimation. Software Engineering Notes 26(4), 54–59 (2001)

    Article  Google Scholar 

  21. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and its Applications. Springer, New York (1997)

    MATH  Google Scholar 

  22. Malcev, A.I.: Algorithms and Recursive Functions (in Russian), Nauka, Moscow (1965)

    Google Scholar 

  23. Markov, A.A.: Theory of Algorithms (in Russian). Transactions of the Mathematical Institute of the Academy of Sciences of the USSR 42 (1954)

    Google Scholar 

  24. Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge, Massachusetts (1987)

    Google Scholar 

  25. Rubel, L.A.: Some Mathematical Limitations of the General-Purpose Analog Computer. Advances in Applied Mathematics 9, 22–34 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, Reading, Mass (1967)

    MATH  Google Scholar 

  27. Turing, A.M.: Can digital computers think?. Machine Intelligence, 15, Oxford University Press, Oxford (1951, 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jérôme Durand-Lose Maurice Margenstern

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burgin, M. (2007). Universality, Reducibility, and Completeness. In: Durand-Lose, J., Margenstern, M. (eds) Machines, Computations, and Universality. MCU 2007. Lecture Notes in Computer Science, vol 4664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74593-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74593-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74592-1

  • Online ISBN: 978-3-540-74593-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics