Skip to main content

Electromagnetic Methods

  • Chapter
Environmental Geology

Abstract

Electromagnetic inductive methods provide an excellent means to obtain information about electrical ground conductivities. They can be classified as natural field methods and controlled source methods. The well-known natural field method magnetotellurics, used since the 1950s employs fluctuations of the Earth’s magnetic field ranging from 10-5 seconds to several hours to study the distribution of the conductivities with depth (Cagniard, 1953). The electromagnetic exploration methods described in this Chapter are based on the use of electromagnetic fields generated by controlled sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and further reading

  1. Archie, G. E. (1942): The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions Americ. Inst. Mineral. Met., 146, 54–62.

    Google Scholar 

  2. Auken, E., Nebel, L., Sorensen, K., Breiner, M., Pellerin, L. & Christensen, N. B. (2002): EMMA-a geophysical training and education tool for electromagnetic modeling and analysis. JEEG, 7, 57–68. Software free available from www.hgg.au.dk.

    Google Scholar 

  3. Bartel, L. C., Cress, D. H. & Stolarczyk, L. G. (1997): Evaluation of the electromagnetic gradiometer concept for detection of underground structures — theory and application. JEEG, 2, 127–136.

    Google Scholar 

  4. Berktold, A. (2005): VLF, VLF-R und Radiomagnetiotellurik. In: Knädel, K., Krummel, H. & Lange, G. (Eds.) (2005): Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten. Band 3 Geophysik, 2nd edn. Springer, Berlin.

    Google Scholar 

  5. Buselli, G. & Cameron, M. (1996): Robust statistical methods for reducing sferics noise contaminating transient electromagnetic measurements. Geophysics, 61, 1633–1648.

    Article  Google Scholar 

  6. Cagniard; L. (1953): Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 18, 605–635.

    Article  Google Scholar 

  7. Christiansen; A. V. & Christensen, N. B. (2003): A quantitative appraisal of airborne and ground-based transient electromagnetic (TEM) measurements in Denmark. Geophysics, 68, 523–534.

    Article  Google Scholar 

  8. Das, U. C. (1995): Apparent resistivity curves in controlled source electromagnetic sounding directly reflecting true resistivities in a layered earth. Geophysics, 60, 53–60.

    Article  Google Scholar 

  9. Das, K., Becker; A. & Lee, K. H. (2002): Experimental validation of the wavefield transform of electromagnetic fields. Geophys. Prosp., 50, 441–451.

    Article  Google Scholar 

  10. Dyck, A. V. (1991): Drill-hole electromagnetic methods. In: Nabighian, M. N. (Ed.): Electromagnetic methods in applied geophysics — applications part B. Society of Exploration Geophysicists, Tulsa, 881–930.

    Google Scholar 

  11. Eberle, D. (1981): A method of reducing terrain relief effects from VLF-EM data. Geoexploration, 19, 103–114.

    Article  Google Scholar 

  12. Fraserd. C. (1969): Contouring of VLF-EM data. Geophysics, 34, 958–967.

    Article  Google Scholar 

  13. Frischknecht, F. C., Labson, V. F., Spies, B. R. Anderson, W. L. (1991): Profiling methods using small sources. In: Nabighian, M. N. (Ed.): Electromagnetic methods in applied geophysics, 2, part A. Society of Exploration Geophysicists, Tulsa, 105–270.

    Google Scholar 

  14. Limited (2001): www.geonics.com/tdem.htmWTEM47.

    Google Scholar 

  15. Goldman; M., Tabarovsky, L. & Rabinovich, M. (1994): On the influence of 3-D structures in the interpretation of transient electromagnetic sounding data. Geophysics, 59, 889–901.

    Article  Google Scholar 

  16. Greinwald, S. (1985): Wechselstromverfahren. In: Bender, F. (Ed.): Angewandte Geowissenschaften, II: Methoden der Angewandten Geophysik und mathematische Verfahren in den Geowissenschaften. Enke, Stuttgart, 352–387.

    Google Scholar 

  17. Guerin, R., Tabbagh, A. & Andrieux, P. (1994): Field and/or resistivity mapping in MT-VLF and implications for data processing. Geophysics, 59, 1695–1712.

    Article  Google Scholar 

  18. Hoekstra, P. & Blohm, M. W. (1990): Case histories of time-domain electromagnetic soundings in environmental geophysics. In: Ward, S. H. (Ed.): Geotechnical and environmental geophysics, II. Society of Exploration Geophysicists, Tulsa, 1–15.

    Google Scholar 

  19. Karous, M. & Hjelt, S. E. (1983): Linear filtering of VLF dip angle measurements. Geophys. Prosp., 31, 782–794.

    Article  Google Scholar 

  20. Kaufman; A. A. (1989): A paradox in geoelectromagnetism and its resolution, demonstrating the equivalence of frequency and transient domain methods. Geoexploration, 25, 287–317.

    Article  Google Scholar 

  21. Kaufman, A. A. & Hoekstra, P. (2001): Electromagnetic soundings. Methods in Geochemistry and Geophysics, 34. Elsevier, Amsterdam.

    Google Scholar 

  22. Ketola, M. & Puranen, M. (1967): Type curves for the interpretation of slingram (Horizontal Loop) anomalies over tabular bodies. Report of Investigations, No. 1. Geological Survey of Finland, Otaniemi.

    Google Scholar 

  23. Mauldin-Mayerle, Carson, N.. M. & Zonge; K. L. (1998): Environmental application of high resolution TEM methods. Proceedings of the 4th Meeting of the Environmental and Engineering Geophysical Society. Barcelona, September 14–17, 829–832.

    Google Scholar 

  24. Mcneill, J. D. (1980): Electromagnetic terrain conductivity measurements at low induction numbers. GEONICS Technical Note TN6.

    Google Scholar 

  25. Mcneill, J. D. (1988): Advances in electromagnetic methods for groundwater studies. In: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP). March 28–31, 1988, Golden, Colorado, 251–348.

    Google Scholar 

  26. Mcneill, J. D. (1990): Use of electromagnetic methods for groundwater studies. In.: Ward, S. H. (Ed.): Geotechnical and environmental geophysics, I: Review and tutorial. Society of Exploration Geophysicists, Tulsa, 191–218.

    Google Scholar 

  27. Mcneill, J. D. (1991): Advances in electromagnetic methods for groundwater studies. Geoexploration, 27, 65–80.

    Article  Google Scholar 

  28. Mcneill, J. D. & Labson, V. F. (1991): Geological mapping using VLF radio fields. In: Nabighian, M. N. (Ed.): Electromagnetic methods in applied geophysics, 2 (applications), part B, investigations in Geophysics, Society of Exploration Geophysicists, Tulsa, Oklahoma, 521–640.

    Google Scholar 

  29. Mcneill, J. D. & Bosnar, M. (1996): Application of time domain electromagnetic techniques to UXO detection. Paper presented at the Williamsburg UXO Conference, March 1996.

    Google Scholar 

  30. Meju, A. M. (1998): A simple method of transient electromagnetic data analysis. Geophysics, 63, 405–410.

    Article  Google Scholar 

  31. Milsom, J. (1996): Field geophysics. Open University Press, Milton Keynes and Halsted Press, Wiley, New-York.

    Google Scholar 

  32. Nabighian, M. N. & Macnae, J. C. (1991): Time-domain electromagnetic prospecting methods — In: Nabighian, M. N. (Ed.): Electromagnetic methods in applied geophysics, 2, part A. Society of Exploration Geophysicists, Tulsa, 427–520.

    Google Scholar 

  33. Oldenburg, D. W. (2001): University of British Columbia — geophysical inversion facility inversion and modelling of applied geophysical electromagnetic data (IMAGE). Consortium: http/Avww.geop.ubc.ca/gif/research/image/index.html

    Google Scholar 

  34. Palacky, G. J. (1991): Application of the multifrequency horizontal-loop EM-method in overburden investigations. Geophys. Prosp., 39, 1061–1082.

    Article  Google Scholar 

  35. Patra, H. P. & Mallick, K. (1980): Geosounding principles, 2. Time-varying geoelectric soundings. Elsevier, Amsterdam.

    Google Scholar 

  36. Pellerin; L., Labson, V., Pfeifer, C. (1994): VETEM a very early time electromagnetic system. Proceedings of the symposium on the application of geophysics to engineering and environmental problems, SAGEEP, Boston, March 1994, 795–802.

    Google Scholar 

  37. Reynolds, J. M. (1997): An introduction to applied and environmental Geophysics. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  38. Sinha, A. K. (1990): Interpretation of ground VLF-EM data in terms of vertical conductor models. Geoexploration, 26, 213–231.

    Article  Google Scholar 

  39. Smith, D., vonG., Wright, D. L., Abraham, J. D. (2000): Advances in very early time electromagnetic (VETEM) system data analysis and image processing. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Arlington, February 20–24, 2000, 469–475.

    Google Scholar 

  40. Snyder, D. D., Macinnes, S., Urquhart, S. & Zonge, K. L. (1999): Possibilities for UXO classification using characteristic modes of the broad-band electromagnetic induction response. Paper presented at “A new technology conference on the science and technology of unexploded ordnance (UXO) removal and site remediation”. Outrigger Wailea Resort, Maui, Hawaii, November 8–11, 1999.

    Google Scholar 

  41. Sheriff, R. E. (1991): Encyclopedic dictionary of exploration geophysics. 3rd edn. Society of Exploration Geophysicists, Tulsa.

    Google Scholar 

  42. Spies, B. R. & Eggers, D. W. (1986): The use and misuse of apparent resistivity in electromagnetic methods. Geophysics, 51, 1462–1471.

    Article  Google Scholar 

  43. Spies, B. R. (1989): Depth of investigation in electromagnetic sounding methods. Geophysics, 54, 872–888.

    Article  Google Scholar 

  44. Spies, B. R. & Frischknecht, F. C. (1991): Electromagnetic Sounding. In: Nabighian, M. N. (Ed.): Electromagnetic methods in applied geophysics, 2. part A. Society of Exploration Geophysicists, Tulsa, 285–425.

    Google Scholar 

  45. Tabbagh, A., Benderitter, Y., Andrieux, P., Decriaud, J. P. & Guerin, R. (1991): VLF resistivity mapping and verticalisation of the electric field. Geophys. Prosp., 39, 1083–1097.

    Article  Google Scholar 

  46. Telford, W. M., Geldart, L. P. & Sheriff, R. E. (1990): Applied geophysics, 2nd edn., Cambridge University Press, Cambridge.

    Google Scholar 

  47. Tezkan, B., Härdt, A. & Gobashy, M. (2000): Two dimensional inversion of radiomagnetotelluric data: selected case histories for waste site exploration. Journal of Applied Geophysics, 44, 237–256.

    Article  Google Scholar 

  48. Turberg, P., Müller, I. & Flury; B. (1994): Hydrogeological investigation of porous environments by radio magnetotelluric resistivity (RMT-R 12–240 kHz). J. Appl. Geophysics, 31, 133–143.

    Article  Google Scholar 

  49. Turberg, P. & Barker, R. (1996): Joint application of radiomagnetotelluric and electrical imaging surveys in complex subsurface environments. First Break, 14, 105–112.

    Google Scholar 

  50. Vallee, M. A., Chouteau, M. & Palacky, G. J. (1992): Effect of temporal and spatial variations of the primary signal on VLF total-field surveys. Geophysics, 57, 97–105.

    Article  Google Scholar 

  51. Verma, S. K. & Sharma, S. P. (1995): Focused resolution of thin conducting layers by various dipole EM systems. Geophysics, 60, 381–389.

    Article  Google Scholar 

  52. Vogelsang, D. (1991): Elektromagnetische Erkundung grundwasserführender Strukturen. Geol. Jb., E 48, Hannover, 283–308.

    Google Scholar 

  53. Vozoff, K. (1988): The magnetotelluric method. In Nabighian, M. N. (Ed.): Electromagnetic methods in applied geophysics, 2, application, part B. Society of Exploration Geophysicists, Tulsa, 641–711.

    Google Scholar 

  54. Won, I. I, Keiswetter, D. A., Fields, R. A. & Sutton, L. (1996): GEM-2: A new multifrequency electromagnetic sensor. JEEG, 2, 129–137.

    Google Scholar 

  55. Witten, A., Won, I. J. & Norton, S. (1997): Imaging underground structures using broadband electromagnetic induction. JEEG, 2, 105–114.

    Google Scholar 

  56. Ward, S. H. & Hohmann, G. W. (1987): Electromagnetic theory for geophysical applications. In: Nabighian, M. N. (Ed.): Electromagnetic methods in applied geophysics — theory, 1. Society of Exploration Geophysicists, Tulsa, 131–311.

    Google Scholar 

  57. West, G. F. & Macnae, J. C. (1991): Physics of the electromagnetic induction exploration method. In: Nabighian, M. N. (Ed.): Electromagnetic methods in applied geophysics, 2, Part A. Society of Exploration Geophysicists, Tulsa, 5–45.

    Google Scholar 

  58. Wright, D. L., Smith, D. V. & Abraham, J. D. (2000): A VETEM survey of a former munitions foundry site at the Denver Federal Center. Proceedings of the symposium on the application of geophysics to engineering and environmental problems, SAGEEP, Arlington, February 20–24, 2000, 459–468.

    Google Scholar 

  59. Yang, C.-H., Tong, L.-T. & Huang, C.-F. (1999): Combined application of dc and TEM to sea-water intrusion mapping. Geophysics, 64, 417–425.

    Article  Google Scholar 

  60. Zacher, G., Tezkan, B., Müller, L, Neubauer, F. M. & Härdt, A. (1996): Radiomagnetotellurics: a powerful tool for waste site exploration. European Journal of Environmental and Engineering Geophysics, 1, 139–159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lange, G., Seidel, K. (2007). Electromagnetic Methods. In: Environmental Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74671-3_9

Download citation

Publish with us

Policies and ethics