Skip to main content

Part of the book series: Advances in Geographic Information Science ((AGIS))

Abstract

This chapter provides an overview of GIS-based heuristic methods for tackling spatial multiobjective decision problems. The methods are classified into two groups. First, there is a group of basic heuristic methods that tend to be designed for solving specific spatial problems. This group includes methods such as: site suitability heuristics, site location heuristics, and greedy algorithms. Second, there is a large collection of meta-heuristics. These approaches typically employ conventional meta-heuristics for solving spatial optimization problems using GIS. This group of methods include: genetic algorithms, simulated annealing, tabu search, and swarm intelligence methods. This chapter focusses on the concepts and procedures of genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts, J. C. J. H., & Heuvelink, G. B. M. (2002). Using simulated annealing for resource allocation. International Journal of Geographical Information Science, 16(6), 571–587.

    Google Scholar 

  • Aerts, J. C. J. H., van Herwijnen, M., Janssen, R., & Stewart, T. J. (2005). Evaluating spatial design techniques for solving land-use allocation problems. Journal of Environmental Planning and Management, 48(1), 121–142.

    Google Scholar 

  • Aguilar-Manjarrez, J., & Ross, L. G. (1995). Geographical information system (GIS) environmental models for aquaculture development in Sinaloa state, Mexico. Aquaculture International, 3(2), 103–115.

    Google Scholar 

  • Armstrong, M. P., Xiao, N., & Bennett, D. A. (2003). Using genetic algorithms to create multicriteria class intervals for choropleth maps. Annals of the Association of American Geographers, 93(3), 595–623.

    Google Scholar 

  • Balling, R., Powell, B., & Saito, M. (2004). Generating future land-use and transportation plans for high-growth cities using a genetic algorithm. Computer-Aided Civil and Infrastructure Engineering, 19(3), 213–222.

    Google Scholar 

  • Balling, R. J., Taber, J. T., Brown, M. R., & Day, K. (1999). Multiobjective urban planning using a genetic algorithm. Journal of Urban Planning and Development, 125(2), 86–99.

    Google Scholar 

  • Bennett, D. A., Wade, G. A., & Armstrong, M. P. (1999). Exploring the solution space of semi-structured geographical problems using genetic algorithms. Transactions in GIS, 3(1), 51–71.

    Google Scholar 

  • Bennett, D. A., Xiao, N., & Armstrong, M. P. (2004). Exploring the geographic consequences of public policies using evolutionary algorithms. Annals of the Association of American Geographers, 94(4), 827–847.

    Google Scholar 

  • Bergena, K. M., Brown, D. J. G., Rutherford, J. F., & Gustafson, E. J. (2005). Change detection with heterogeneous data using ecoregional stratification, statistical summaries and a land allocation algorithm. Remote Sensing of Environment, 97(4), 434–446.

    Google Scholar 

  • Bergey, P., Ragsdale, C. T., & Hoskote, M. (2003). A simulated annealing genetic algorithm for the electrical power districting problem. Annals of Operations Research, 121(1–4), 33–55.

    Google Scholar 

  • Bettinger, P., Sessions, J., & Boston, K. (1997). Using tabu search to schedule timber harvests subject to spatial wildlife goals for big game. Ecological Modelling, 94(2–3), 111–123.

    Google Scholar 

  • Bong, C. W., & Wang, Y. C. (2004). A multiobjective hybrid metaheuristic approach for GIS-based spatial zoning model. Journal of Mathematical Modelling and Algorithms, 3(3), 245–261.

    Google Scholar 

  • Bong, C. W., & Wang, Y. C. (2006). A multi-objective hybrid metaheuristic for zone definition procedure. International Journal of Services Operations and Informatics, 1(2), 146–164.

    Google Scholar 

  • Bozkaya, B., Erkut, E., & Laporte, G. (2003). Discrete optimization: a tabu search heuristic and adaptive memory procedure for political districting. European Journal of Operational Research, 144(1), 12–26.

    Google Scholar 

  • Brookes, C. J. (1997a). A parameterized region-growing programme for site allocation on raster suitability maps. International Journal of Geographical Information Systems, 11(4), 375–396.

    Google Scholar 

  • Brookes, C. J. (1997b). A genetic algorithm for locating optimal sites on raster suitability maps. Transactions in GIS, 2(3), 91–107.

    Google Scholar 

  • Brookes, C. J. (2001). A genetic algorithm for designing optimal patch configurations in GIS. International Journal of Geographical Information Systems, 15(6), 539–559.

    Google Scholar 

  • Burke, E. K., & Kendall, G. (2005). Search methodologies: Introductory tutorials in optimization and decision support techniques. New York: Springer.

    Google Scholar 

  • Cao, K., Batty, M., Huang, B., Liu, Y., Yu, L., & Chen, J. (2011). Spatial multi-objective land use optimization: extensions to the nondominated sorting genetic algorithm-II. International Journal of Geographical Information Science, 25(12), 1949–1969.

    Google Scholar 

  • Cao, K., Huang, B., Wang, S., & Lin, H. (2012). Sustainable land use optimization using boundary-based fast genetic algorithm. Computers, Environment and Urban Systems, 36(3), 257–269.

    Google Scholar 

  • Cao, K., Huang, B., Li, M., & Li, W. (2014). Calibrating a cellular automata model for understanding rural–urban land conversion: a Pareto front-based multi-objective optimization approach. International Journal of Geographical Information Science, 28(5), 1028–1046.

    Google Scholar 

  • Çelik, H. M., & Türk, E. (2011). Determination of optimum environmental conservation: Using multi-criteria decision-making techniques. European Planning Studies, 19(3), 479–499.

    Google Scholar 

  • Chandramouli, M., Huang, B., & Xu, L. (2009). Spatial change optimization: integrating GA with visualization for 3D scenario generation. Photogrammetric Engineering and Remote Sensing, 75(8), 1015–1022.

    Google Scholar 

  • Church, R. L., Gerrard, R. A., Gilpin, M., & Stine, P. (2003). Constructing cell-based habitat patches useful in conservation planning. Annals of the Association of American Geographers, 93(4), 814–827.

    Google Scholar 

  • Cromley, R. G., & Hanink, D. M. (1999). Coupling land use allocation models with raster GIS. Journal of Geographical Systems, 1(2), 137–153.

    Google Scholar 

  • Czyzak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing a metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7(1), 34–47.

    Google Scholar 

  • Datta, D., Deb, K., Fonseca, C. M., Lobo, F., & Condado, P. (2007). Multi-objective evolutionary algorithm for land-use management problem. International Journal of Computational Intelligence Research, 3(4), 1–24.

    Google Scholar 

  • Datta, D., Malczewski, J., & Figueira, J. R. (2012). Spatial aggregation and compactness of census areas with a multiobjective genetic algorithm: a case study in Canada. Environment and Planning B-Planning and Design, 39(2), 376–392.

    Google Scholar 

  • Davis, F. W., Costello, C., & Stoms, D. (2006). Efficient conservation in a utility-maximization framework. Ecology and Society, 11(1), 33.

    Google Scholar 

  • Davis, F. W., Stoms, D. M., Costello, C. J., Machado, E. A., Metz, J., Gerrard, R., Andelman, S., Regan, H., Church, R. (2003). A framework for setting land conservation priorities, using multi-criteria scoring and an optimal fund allocation strategy (p. 72). University of California, Santa Barbara National Center for Ecological Analysis and Synthesis, Report to the Resources Agency of California.

    Google Scholar 

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester, England: Wiley.

    Google Scholar 

  • Dibble, C., & Densham, P. J. (1993). Generating interesting alternatives in GIS and SDSS using genetic algorithms. In Proceedings of GIS/LIS ’93 (pp. 180–189). American Society for Photogrammetry and Remote Sensing/American Congress on Surveying and Mapping.

    Google Scholar 

  • Dorigo, M., Colorni, A., Maniezzo, V. (1991). Positive feedback as a search strategy (Technical Report, pp. 91–106). Milan: Politecnico di Milano.

    Google Scholar 

  • Ducheyne, E. I., de Wulf, R. R., & de Baets, B. (2006). A spatial approach to forest-management optimization: Linking GIS and multiple objective genetic algorithms. International Journal of Geographical Information Science, 20(8), 917–928.

    Google Scholar 

  • Duh, J. D. (2008). Knowledge-informed simulated annealing for spatial allocation problems. In C. M. Tan (Ed.), Simulated annealing (pp. 105–118). In Tech.

    Google Scholar 

  • Duh, J. D., & Brown, D. G. (2005). Generating prescribed patterns in landscape models. In D. J. Maguire, M. F. Goodchild, & M. Batty (Eds.), GIS, spatial analysis and modeling (pp. 423–444). Redlands, CA: ESRI Press.

    Google Scholar 

  • Duh, J. D., & Brown, D. G. (2007). Knowledge-informed Pareto simulated annealing for multi-objective spatial allocation. Computers, Environment and Urban Systems, 31(3), 253–281.

    Google Scholar 

  • Eastman, J. R., Jin, W. G., Kyem, P., & Toledano, J. (1995). Raster procedures for multicriteria multiobjective decisions. Photogrammetric Engineering and Remote Sensing, 61(5), 539–547.

    Google Scholar 

  • Fang, Z., Tu, W., Li, Q., & Li, Q. (2011). A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities. Journal of Transport Geography, 19(4), 623–634.

    Google Scholar 

  • Feng, C. M., & Lin, J. J. (1999). Using a genetic algorithm to generate alternative sketch maps for urban planning. Computers, Environment and Urban Systems, 23(2), 91–108.

    Google Scholar 

  • Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 6(2), 109–133.

    Google Scholar 

  • Fischer, D. T., & Church, R. L. (2005). The SITES reserve selection system: A critical review. Environmental Modeling and Assessment, 10(3), 215–228.

    Google Scholar 

  • Fotakis, D. G., Sidiropoulos, E., Myronidis, D., & Ioannou, K. (2012). Spatial genetic algorithm for multi-objective forest planning. Forest Policy and Economics, 21, 12–19.

    Google Scholar 

  • Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization. New York: Wiley.

    Google Scholar 

  • Glover, F. (1989). Tabu search—part I. ORSA Journal on Computing, 1(3), 190–206.

    Google Scholar 

  • Halfawy, M. R., Dridi, L., & Baker, S. (2008). Integrated decision support system for optimal renewal planning of sewer networks. Journal of Computing in Civil Engineering, 22(6), 360–372.

    Google Scholar 

  • Healy, M., & Malczewski, J. (May 31–June 4, 2005). Exploring site cell-based patch growing patterns in GIS-based multicriteria decision support system. In Proceedings of the Canadian Association of Geographers Annual Meeting, London, Ontario.

    Google Scholar 

  • Hou, J., Mi, W., & Sun, J. (2014). Optimal spatial allocation of water resources based on Pareto ant colony algorithm. International Journal of Geographical Information Science, 28(2), 213–233.

    Google Scholar 

  • Huang, B., Liu, N., & Chandramouli, M. (2006a). A GIS supported ant algorithm for the linear feature covering problem with distance constraints. Decision Support Systems, 42(2), 1063–1075.

    Google Scholar 

  • Huang, B., Yao, L., & Raguraman, K. (2006b). Bi-level GA and GIS for multi-objective TSP route planning. Transportation Planning and Technology, 29(2), 105–124.

    Google Scholar 

  • Indriasari, V., Mahmud, A. R., Ahmad, N., & Shariff, A. R. M. (2010). Maximal service area problem for optimal siting of emergency facilities. International Journal of Geographical Information Science, 24(2), 213–230.

    Google Scholar 

  • Jankowski, P., Fraley, G., & Pebesma, E. (2014). An exploratory approach to spatial decision support. Computers, Environment and Urban Systems, 45, 101–113.

    Google Scholar 

  • Janssen, R., van Herwijnen, M., Stewart, T. J., & Aerts, J. C. J. H. (2008). Multiobjective decision support for land-use planning. Environment and Planning B, 35(4), 740–756.

    Google Scholar 

  • Kangas, A., Kangas, J., & Kurttila, M. (2008). Decision support for forest management. Berlin: Springer.

    Google Scholar 

  • Kangas, J., Pukkala, T., & Kangas, A. S. (2001). HERO: heuristic optimisation for multi-criteria forestry decision analysis. In D. Schmoldt, J. Kangas, G. A. Mendoza, & M. Pesonen (Eds.), The analytic hierarchy process in natural resource and environmental decision making, managing forest ecosystems 3 (pp. 51–65). Kannus, Finland: Kluwer Academic Publishers.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. (Nov 27–Dec 01, 1995). Particle swarm optimization. In Proceedings of the 4th IEEE International Conference on Neural Networks (pp. 1942–1948). Perth, WA.

    Google Scholar 

  • Kim, K., Murray, A. T., & Xiao, N. (2008). A multiobjective evolutionary algorithm for surveillance sensor placement. Environment and Planning B, 35(5), 935–948.

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.

    Google Scholar 

  • Kurttila, M., Pukkala, T., & Loikkanen, J. (2002). The performance of alternative spatial objective types in forest planning calculations: A case for flying squirrel and moose. Forest Ecology and Management, 166(1–3), 245–260.

    Google Scholar 

  • Kyem, P. A. K. (2001). An application of a choice heuristic algorithm for managing land resource allocation problems involving multiple parties and conflicting interests. Transactions in GIS, 5(2), 111–125.

    Google Scholar 

  • Kyem, P. A. K. (2004). On intractable conflicts and participatory GIS applications: the search for consensus amidst competing claims and institutional demands. Annals of the Association of American Geographers, 94(1), 37–57.

    Google Scholar 

  • Lanta, C. L., Kraft, S. E., Beaulieu, J., Bennett, D., Loftus, T., & Nicklow, J. (2005). Using GIS-based ecological-economic modeling to evaluate policies affecting agricultural watersheds. Ecological Economics, 55(4), 467–484.

    Google Scholar 

  • Li, X., He, J. Q., & Liu, X. P. (2009a). Intelligent GIS for solving high-dimensional site selection problems using ant colony optimization techniques. International Journal of Geographical Information Science, 23(4), 399–416.

    Google Scholar 

  • Li, X., He, J. Q., & Liu, X. P. (2009b). Ant intelligence for solving optimal path-covering problems with multi-objectives. International Journal of Geographical Information Science, 23(7), 839–857.

    Google Scholar 

  • Li, X., Chen, Y. M., Liu, X. P., Li, D., & He, J. Q. (2011a). Concepts, methodologies, and tools of an integrated geographical simulation and optimization system. International Journal of Geographical Information Science, 25(4), 633–655.

    Google Scholar 

  • Li, X., Lao, C., Liu, W., & Chen, Y. (2011b). Coupling urban cellular automata with ant colony optimization for zoning protected natural areas under a changing landscape. International Journal of Geographical Information Science, 25(4), 575–593.

    Google Scholar 

  • Li, X., Shi, X., He, J., & Liu, X. (2011c). Coupling simulation and optimization to solve planning problems in a fast-developing area. Annals of the Association of American Geographers, 101(5), 1032–1048.

    Google Scholar 

  • Li, X., & Yeh, A. G. (2005). Integration of genetic algorithms and GIS for optimal location search. International Journal of Geographical Information Science, 19(5), 581–601.

    Google Scholar 

  • Ligmann-Zielinska, A., Church, R., & Jankowski, P. (2008). Spatial optimization as a generative technique for sustainable multiobjective landuse allocation. International Journal of Geographical Information Science, 22(6), 601–622.

    Google Scholar 

  • Liu, N., Huang, B., & Chandeamouli, M. (2006). Optimal sting of fire stations using GIS and ANT algorithm. Journal of Computing in Civil Engineering, 20(5), 361–369.

    Google Scholar 

  • Liu, N., Huang, B., & Pan, X. (2005). Using the ant algorithm to derive Pareto fronts for multiobjective siting of emergency service facilities. Transportation Research Record, 1935, 120–129.

    Google Scholar 

  • Liu, X., Lao, C., Li, X., Liu, Y., & Chen, Y. (2012a). An integrated approach of remote sensing, GIS and swarm intelligence for zoning protected ecological areas. Landscape Ecology, 27(3), 447–463.

    Google Scholar 

  • Liu, X., Li, X., Shi, X., Huang, K., & Liu, Y. (2012b). A multi-type ant colony optimization (MACO) method for optimal land use allocation in large areas. International Journal of Geographical Information Science, 26(7), 1325–1343.

    Google Scholar 

  • Lourenço, H. R., Paixão, J. P., & Portugal, R. (2001). Multiobjective metaheuristics for the bus driver scheduling problem. Transportation Science, 35(3), 331–343.

    Google Scholar 

  • Lowry, M. B., & Balling, R. J. (2009). An approach to land-use and transportation planning that facilitates city and region cooperation. Environment and Planning B, 36(3), 487–504.

    Google Scholar 

  • Ma, S., He, J., Liu, F., & Yu, Y. (2011). Land-use spatial optimization based on PSO algorithm. Geo-spatial Information Science, 14(1), 54–61.

    Google Scholar 

  • Macmillan, W., & Pierce, T. (1994). Optimization modelling in a GIS framework: the problem of political redistricting. In S. Fotheringham & P. Rogerson (Eds.), GIS and spatial analysis (pp. 221–246). London: Taylor and Francis.

    Google Scholar 

  • Makropoulos, C. K., & Butler, D. (2005). A multi-objective evolutionary programming approach to the ‘object location’ spatial analysis and optimisation problem within the urban water management domain. Civil Engineering and Environmental Systems, 22(2), 85–108.

    Google Scholar 

  • Maringanti, C., Chaubey, I., & Popp, J. (2009). Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control. Water Resources Research, 45(6), 1–15.

    Google Scholar 

  • Masoomi, Z., Mesgari, M. S., & Hamrah, M. (2013). Allocation of urban land uses by multi-objective particle swarm optimization algorithm. International Journal of Geographical Information Science, 27(3), 542–566.

    Google Scholar 

  • Matthews, K. (2001). Applying genetic algorithms to multi-objective land-use planning (Doctoral Dissertation, The Robert Gordon University, Aberdeen, UK, 2001).

    Google Scholar 

  • Matthews, K. B., Craw, S., Elder, S., Sibbald, A. R. (2000). Evaluating multi-objective land use planning tools using soft systems methods. In 19th Workshop of the UK Planning and Scheduling Special Interest Group (PLANSIG). Available at http://www.macaulay.ac.uk/LADSS/papers/P16.pdf [02 July 2014]. Accessed on 14–15 December 2000.

  • Matthews, K. B., Sibbald, A. R., & Craw, S. (1999). Implementation of a spatial decision support system for rural land use planning: Integrating geographic information system and environmental models with search and optimisation algorithms. Computers and Electronics in Agriculture, 23(1), 9–26.

    Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.

    Google Scholar 

  • Mooney, P., & Winstanley, A. (2006). An evolutionary algorithm for multicriteria path optimization problems. International Journal of Geographical Information Science, 20(4), 401–423.

    Google Scholar 

  • Nozick, L. K. (2001). The fixed charge facility location problem with coverage restrictions. Transportation Research Part E-Logistics and Transportation Review, 37(4), 281–296.

    Google Scholar 

  • O’Sullivan, D., & Unwin, D. J. (2010). Geographic information analysis. Hoboken, NJ: Wiley.

    Google Scholar 

  • Porta, J., Parapar, J., Doallo, R., Rivera, F. F., Santé, I., & Crecente, R. (2013). High performance genetic algorithm for land use planning. Computers, Environment and Urban Systems, 37(1), 45–58.

    Google Scholar 

  • Possingham, H., Ball, I., & Andelman, S. (2000). Mathematical methods for identifying representative reserve networks. In S. Ferson & M. A. Burgman (Eds.), Quantitative methods for conservation biology (pp. 291–306). New York: Springer.

    Google Scholar 

  • Pukkala, T., & Kangas, J. (1993). A heuristic optimization method for forest planning and decision making. Scandinavian Journal of Forest Research, 8(1–4), 560–570.

    Google Scholar 

  • Pukkala, T., Nuutinen, T., & Kangas, J. (1995). Integrating scenic and recreational amenities into numerical forest planning. Landscape and Urban Planning, 32(3), 185–195.

    Google Scholar 

  • Roberts, S. A., Hall, G. B., & Calamai, P. H. (2011). Evolutionary multi-objective optimization for landscape system design. Journal of Geographical Systems, 13(3), 299–326.

    Google Scholar 

  • Saadatseresht, M., Mansourian, A., & Taleai, M. (2009). Evacuation planning using multiobjective evolutionary optimization approach. European Journal of Operational Research, 198(1), 305–314.

    Google Scholar 

  • Santé-Riveira, I., Boullón-Magán, M., Crecente-Maseda, R., & Miranda-Barrós, D. (2008a). Algorithm based on simulated annealing for land-use allocation. Computers and Geosciences, 34(3), 259–268.

    Google Scholar 

  • Santé-Riveira, I., Crecente-Maseda, R., & Miranda-Barrós, D. (2008b). GIS-based planning support system for rural land-use allocation. Computers and Electronics in Agriculture, 63(2), 257–273.

    Google Scholar 

  • Sastry, K., Goldberg, D. E., & Kendall, G. (2005). Genetic algorithms. In E. Burke & G. Kendall (Eds.), Search methodologies: Introductory tutorials in optimization, and decision support techniques (pp. 97–125). Berlin: Springer.

    Google Scholar 

  • Sharma, S. K., & Lees, B. G. (2004). A comparison of simulated annealing and GIS based MOLA for solving the problem of multi-objective land use assessment and allocation. In Proceedings of the 17th International Conference on Multiple Criteria Decision Analysis, Whistler, Canada, Open-File Report AP58.

    Google Scholar 

  • Siitonen, P., Tanskanen, A., & Lehtinen, A. (2002). Method for selection of old-forest reserves. Conservation Biology, 16(5), 1398–1408.

    Google Scholar 

  • Siitonen, P., Tanskanen, A., & Lehtinen, A. (2003). Selecting forest reserves with a multiobjective spatial algorithm. Environmental Science and Policy, 6(3), 301–309.

    Google Scholar 

  • Stewart, T. J., Janssen, R., & van Herwijnen, M. (2004). A genetic algorithm approach to multiobjective land use planning. Computers and Operations Research, 31(14), 2293–2313.

    Google Scholar 

  • Store, R., & Antikainen, H. (2010). Using GIS-based multicriteria evaluation and path optimization for effective forest field inventory. Computers, Environment and Urban Systems, 34(2), 153–161.

    Google Scholar 

  • Suman, B., & Kumar, P. (2006). A survey of simulated annealing as a tool for single and multiobjective optimization. Journal of the Operational Research Society, 57(18), 1143–1160.

    Google Scholar 

  • Talbi, E.-G. (2009). Metaheuristics: From design to implementation. Hoboken, NJ: Wiley.

    Google Scholar 

  • Türk, E. & Çelik, H. M., (2013). Impacts of planners’ different viewpoints on optimum land-use allocation. European Planning Studies, 21(12), 1937–1957.

    Google Scholar 

  • Vanegas, P., Cattrysse, D., Van Orshoven, J. (2008). Comparing exact and heuristic methods for site location based on multiple attributes: An afforestation application. In O. Gervasi, B. Murgante, A. Lagana, D. Taniar, Y. Mun, M. L. Gavrilova (Eds.), Computational science and its applications—ICCSA 2008, Perugia, Italy, June 30–July 3, 2008, Part I, LNCS No. 5072 (pp. 389–404). Berlin: Springer.

    Google Scholar 

  • Vanegas, P., Cattrysse, D., & Van Orshoven, J. (2011). A multiple criteria heuristic solution method for locating near to optimal contiguous and compact sites in raster maps. In B. Murgante, G. Borruso, & A. Lapucci (Eds.), Geocomputation, sustainability and environmental planning: Studies in computational intelligence (Vol. 348, pp. 35–56). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Wang, S. H., Huang, S. L., & Budd, W. W. (2012). Integrated ecosystem model for simulating land use allocation. Ecological Modelling, 227, 46–55.

    Google Scholar 

  • Wu, X., Murray, A. T., & Xiao, N. (2011). Multiobjective evolutionary algorithm for optimizing spatial contiguity in reserve network design. Landscape Ecology, 26(3), 425–437.

    Google Scholar 

  • Xiao, N. (2008). A unified conceptual framework for geographical optimization using evolutionary algorithms. Annals of the Association of American Geographers, 98(4), 795–817.

    Google Scholar 

  • Xiao, N., Bennett, D. A., & Armstrong, M. P. (2002). Using evolutionary algorithms to generate alternatives for multiobjective site-search problems. Environment and Planning A, 34(4), 639–656.

    Google Scholar 

  • Xiao, N., Bennett, D. A., & Armstrong, M. P. (2007). Interactive evolutionary approaches to multiobjective spatial decision making: A synthetic review. Computers, Environment and Urban Systems, 31(3), 232–252.

    Google Scholar 

  • Yang, X. S. (2010). Engineering optimization: An introduction with metaheuristic applications. Hoboken, NJ: Wiley.

    Google Scholar 

  • Yu, J., Chen, Y., & Wu, J. (2011). Modeling and implementation of classification rule discovery by ant colony optimisation for spatial land-use suitability assessment. Computers, Environment and Urban Systems, 35, 308–319.

    Google Scholar 

  • Zäpfel, G., Braune, R., & Bögl, M. (2010). Metaheuristic search concepts: A tutorial with applications to production and logistics. Berlin: Springer.

    Google Scholar 

  • Zeng, H., Pukkala, T., Peltola, H., & Kellomäki, S. (2007). Application of ant colony optimizationfor the risk management of wind damage in forest planning. Silva Fennica, 41(2), 315–332.

    Google Scholar 

  • Zhang, X., & Armstrong, M. P. (2008). Genetic algorithms and the corridor location problem: Multiple objectives and alternative solutions. Environment and Planning B: Planning and Design, 35(1), 148–168.

    Google Scholar 

  • Zhang, Y., & Wright, J. R. (2004). Global optimization of combined region aggregation and leveling model. Journal of Computing in Civil Engineering, 18(2), 154–161.

    Google Scholar 

  • Zhou, J., Civco, D. L. (1996). Using genetic learning neural networks for spatial decision making in GIS. Photogrammetric Engineering and Remote Sensing, 62(11), 1287–1295.

    Google Scholar 

  • Zografos, K. G., & Androutsopoulos, K. N. (2008). A decision support system for integrated hazardous materials routing and emergency response decisions. Transportation Research Part C: Emerging Technologies, 16(6), 684–703.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Malczewski .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malczewski, J., Rinner, C. (2015). Heuristic Methods. In: Multicriteria Decision Analysis in Geographic Information Science. Advances in Geographic Information Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74757-4_6

Download citation

Publish with us

Policies and ethics