Skip to main content

Part of the book series: Advances in Geographic Information Science ((AGIS))

Abstract

This chapter overviews the sources of uncertainty in GIS-based multicriteria modeling and discusses methods for handing uncertainties in GIS-MCDA. It focuses on two approaches for handling uncertainties. First, the conventional, deterministic MCDA methods can be modified to take into account uncertainties associated with fuzzy (imprecise) and limited information about the decision situation. Second, the sensitivity analysis can be used for handling uncertainties in GIS-MCDA. Two most often used sensitivity analyses in GIS-based multicriteria modeling are presented: one-at-a time and variance-based methods. This chapter stresses the importance of spatially explicitly approaches to sensitivity analysis of GIS-MCDA models.  

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, E. R. (1989). Sensitivity analysis in complex decision models. Journal of the American Planning Association, 55, 323–333.

    Google Scholar 

  • Anagnostopoulos, K., & Vavatsikos, A. (2012). Site suitability analysis for natural systems for wastewater treatment with spatial fuzzy analytic hierarchy process. Journal of Water Resources Planning and Management, 138(2), 125–134.

    Google Scholar 

  • Andrienko, G. L., & Andrienko, N. V. (1999). Interactive maps for visual data exploration. International Journal of Geographical Information Science, 13(4), 355–374.

    Google Scholar 

  • Andrienko, G. L., Andrienko, N. V., & Jankowski, P. (2003). Building spatial decision support tools for individuals and groups. Journal of Decision Systems, 12(2), 193–208.

    Google Scholar 

  • Baja, S., Chapman, D. M., & Dragovich, D. (2007). Spatial based compromise programming for multiple criteria decision making in land use planning. Environmental Modeling and Assessment, 12, 171–184.

    Google Scholar 

  • Banai, R. (1993). Fuzziness in geographic information systems: contributions from the analytic hierarchy process. International Journal of Geographical Information Systems, 7(4), 315–329.

    Google Scholar 

  • Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), 141–164.

    Google Scholar 

  • Benke, K. K., & Pelizaro, C. (2010). A spatial-statistical approach to the visualisation of uncertainty in land suitability analysis. Journal of Spatial Science, 55(2), 257–272.

    Google Scholar 

  • Bodily, S. E. (1985). Modern decision making: A guide to modeling with decision support systems. New York: McGraw-Hill Book Company.

    Google Scholar 

  • Bolstad, P. (2008). GIS fundamentals. White Lake, MN: Eider Press.

    Google Scholar 

  • Bordogna, G., Pagani, M., & Pasi, G. (2007). A flexible decision support approach to model ill-defined knowledge in GIS. In A. Morris & S. Kokhan (Eds.), Geographic uncertainty in environmental security (pp. 133–152). Berlin: Springer.

    Google Scholar 

  • Boroushaki, S., & Malczewski, J. (2008). Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Computers and Geosciences, 34(4), 399–410.

    Google Scholar 

  • Burrough, P. A., & McDonnel, R. A. (1998). Principles of geographical information systems. Oxford: Oxford University Press.

    Google Scholar 

  • Burton, C. L., & Rosenbaum, M. S. (2003). Decision support to assist environmental sedimentology modelling. Environmental Geology, 43(4), 457–465.

    Google Scholar 

  • Carver, S. J. (1991). Integrating multi-criteria evaluation with geographical information systems. International Journal of Geographical Information Systems, 5(3), 321–339.

    Google Scholar 

  • Charabi, Y., & Gastli, A. (2011). PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. Renewable Energy, 36(9), 2554–2561.

    Google Scholar 

  • Chen, H., Wood, M. D., Linstead, C., & Maltby, E. (2011). Uncertainty analysis in a GIS-based multi-criteria analysis tool for river catchment management. Environmental Modelling and Software, 26(4), 395–405.

    Google Scholar 

  • Chen, S. J., & Hwang, C. L. (1992). Fuzzy multiple attribute decision making. Berlin: Springer.

    Google Scholar 

  • Chen, Y., Khan, S., & Paydar, Z. (2010a). To retire or expand? A fuzzy GIS-based spatial multi-criteria evaluation framework for irrigated agriculture. Irrigation and Drainage, 59(2), 174–188.

    Google Scholar 

  • Chen, Y., Yu, J., & Khan, S. (2010b). Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling and Software, 25(12), 1582–1591.

    Google Scholar 

  • Chen, Y., Yu, J., & Khan, S. (2013). The spatial framework for weight sensitivity analysis in AHP-based multi-criteria decision making. Environmental Modelling and Software, 48, 129–140.

    Google Scholar 

  • Chou, T. Y., Lin, W. T., & Lin, C. Y. (2007). Application of fuzzy theory and PROMETHEE technique to evaluate suitable ecotechnology method: A case study in Shihmen Reservoir Watershed, Taiwan. Ecological Engineering, 31(4), 269–280.

    Google Scholar 

  • Clements, A. C. A., Pfeiffer, D. U., & Martin, V. (2006). Application of knowledge-driven spatial modelling approaches and uncertainty management to a study of Rift Valley fever in Africa. International Journal of Health Geographics, 5, 57.

    Google Scholar 

  • Crosetto, M., & Tarantola, S. (2001). Uncertainty and sensitivity analysis: Tools for GIS-based model implementation. International Journal of Geographical Information Science, 15(5), 415–437.

    Google Scholar 

  • Crosetto, M., Tarantola, S., & Saltelli, A. (2000). Sensitivity and uncertainty analysis in spatial modelling based on GIS. Agriculture, Ecosystems and Environment, 81(1), 71–79.

    Google Scholar 

  • Dorner, S., Shi, J., & Swayne, D. (2007). Multi-objective modelling and decision support using a Bayesian network approximation to a non-point source pollution model. Environmental Modelling and Software, 22(2), 211–222.

    Google Scholar 

  • Durbach, I. N., & Stewart, T. J. (2012). Modeling uncertainty in multi-criteria decision analysis. European Journal of Operational Research, 223(1), 1–14.

    Google Scholar 

  • Eastman, J. R. (1997). IDRISI for windows, version 2.0: Tutorial exercises. Worcester: Clark University.

    Google Scholar 

  • Elaalem, M., Comber, A., & Fisher, P. (2011). A comparison of fuzzy AHP and ideal point methods for evaluating land suitability. Transactions in GIS, 15(3), 329–346.

    Google Scholar 

  • Feick, R. D., & Hall, B. G. (2004). A method for examining the spatial dimension of multi-criteria weight sensitivity. International Journal of Geographical Information Science, 18(8), 815–840.

    Google Scholar 

  • Feizizadeh, B., & Blaschke, T. (2014). Uncertainty analysis of a GIS-multicriteria landslide susceptibility decision analysis study. International Journal of Geographic Information Sciences, 28(3), 610–638.

    Google Scholar 

  • Feizizadeh, B., Blaschke, T., & Nazmfar, H. (2014). GIS-based ordered weighted averaging and Dempster-Shafer methods for landslide susceptibility mapping in the Urmia Lake Basin, Iran. International Journal of Digital Earth, 7(8), 688–708.

    Google Scholar 

  • Fenton, N. E., & Neil, M. (2001). Making decisions: Using Bayesian nets and MCDA. Knowledge-Based Systems, 14(7), 307–325.

    Google Scholar 

  • Geneletti, D., & van Duren, I. (2007). Protected area zoning for conservation and use: A combination of spatial multicriteria and multiobjective evaluation. Landscape and Urban Planning, 85(2), 97–110.

    Google Scholar 

  • Goicoechea, A., Hansen, D. R., & Duckstein, L. (1982). Multiobjective decision analysis with engineering and business applications. New York: Wiley.

    Google Scholar 

  • Gómez-Delgado, M., & Bosque-Sendra, J. (2004). Sensitivity analysis in multi-criteria spatial decision-making: A review. Human and Ecological Risk Assessment, 10(6), 1173–1187.

    Google Scholar 

  • Gómez-Delgado, M., & Tarantola, S. (2006). Global sensitivity analysis, GIS and multi-criteria evaluation for a sustainable planning of a hazardous waste disposal site in Spain. International Journal of Geographical Information Science, 20(4), 449–466.

    Google Scholar 

  • Gorsevski, P. V., Cathcart, S. C., Mirzaei, G., Jamali, M. M., Ye, X., & Gomezdelcampo, E. (2013). A group-based spatial decision support system for wind farm site selection in Northwest Ohio. Energy Policy, 55(C), 374–385.

    Google Scholar 

  • Grandmont, K., Cardille, J., Fortier, D., & Gibéryen, T. (2012). Assessing land suitability for residential development in permafrost regions: A multi-criteria approach to land-use planning in northern Quebec. Canada Journal of Environmental Assessment Policy and Management, 14(1), 1464–3332.

    Google Scholar 

  • van Herwijnen, M., & Rietveld, P. (1999). Spatial dimensions in multicriteria analysis. In J. C. Thill (Ed.), Spatial multicriteria decision making and analysis: A geographic information sciences approach (pp. 77–99). London: Ashgate.

    Google Scholar 

  • Heuvelink, G. B. M., Burrough, P. A., & Stein, A. (1989). Propagation of errors in spatial modelling with GIS. International Journal of Geographical Information Systems, 3(4), 303–322.

    Google Scholar 

  • Heywood, I., Oliver, J., & Tomlinson, S. (1995). Building an exploratory multi-criteria modeling environment for spatial decision support. In P. Fisher (Ed.), Innovations in GIS 2 (pp. 127–136). Bristol: Taylor & Francis.

    Google Scholar 

  • Hobbs, B. F., & Meier, P. (2000). Energy decisions and the environment: A guide to the use of multicriteria methods. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Jankowski, P. (1995). Integrating geographical information systems and multiple criteria decision making methods. International Journal of Geographical Information Systems, 9(3), 251–273.

    Google Scholar 

  • Jankowski, P., Ligmann-Zielinska, A., & Swobodzinski, M. (2008). Choice modeler: A web-based spatial multiple criteria evaluation tool. Transactions in GIS, 12(4), 541–561.

    Google Scholar 

  • Jankowski, P., Nyerges, T. L., Smith, A., Moore, T. J., & Horvath, E. (1997). Spatial group choice: A SDSS tool for collaborative spatial decision-making. International Journal of Geographical Information Systems, 11(6), 566–602.

    Google Scholar 

  • Janssen, R. (1992). Multiobjective decision support for environmental management. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Jensen, J. R. (1996). Introductory digital image processing: A remote sensing perspective. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Systems, 14(2), 173–184.

    Google Scholar 

  • Kangas, J., Hokkanen, J., Kangas, A., Lahdelma, R., & Salminen, P. (2003). Applying stochastic multicriteria acceptability analysis to forest ecosystem management with both cardinal and ordinal criteria. Forest Science, 49(6), 928–937.

    Google Scholar 

  • Kangas, A., Kangas, J., & Kurttila, M. (2008). Decision support for forest management. Berlin: Springer.

    Google Scholar 

  • Kangas, J., Store, R., & Kangas, A. (2005). Socioecological landscape planning approach and multicriteria acceptability analysis in multiple-purpose forest management. Forest Policy and Economics, 7(4), 603–614.

    Google Scholar 

  • Keeney, R. L. (1992). Value-focused thinking: A path to creative decision making. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. New York: Wiley.

    Google Scholar 

  • Keisler, J. M., & Sundell, R. C. (1997). Combining multi-attribute utility and geographic information for boundary decisions: An application to park planning. Journal of Geographic Information and Decision Analysis, 1(2), 100–119.

    Google Scholar 

  • Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Upper Saddle River, NJ: Prentice Hall PTR.

    Google Scholar 

  • Kocabas, V., & Dragićević, S. (2007). Enhancing a GIS cellular automata model of land use change: Bayesian networks, influence diagrams and causality. Transactions in GIS, 11(22), 681–702.

    Google Scholar 

  • Kordi, M., & Brandt, S. A. (2012). Effects of increasing fuzziness on analytic hierarchy process for spatial multicriteria decision analysis. Computers, Environment and Urban Systems, 36(1), 43–53.

    Google Scholar 

  • Laaribi, A., Chevallier, J. J., & Martel, J. M. (1996). A spatial decision aid: A multicriterion evaluation approach. Computers, Environment and Urban Systems, 20(6), 351–366.

    Google Scholar 

  • Lahdelma, R., Hokkanen, J., & Salminen, P. (1998). SMAA—Stochastic multiobjective acceptability analysis. European Journal of Operational Research, 106(1), 137–143.

    Google Scholar 

  • Lai, S. K., & Hopkins, L. D. (1989). The meanings of trade-offs in multiattribute evaluation methods: A comparison. Environment and Planning B, 16(2), 155–170.

    Google Scholar 

  • Leung, Y. (1988). Spatial analysis and planning under imprecision. Amsterdam: North-Holland.

    Google Scholar 

  • Levy, J. K. (2005). Multiple criteria decision making and decision support systems for flood risk management. Stochastic Environmental Research and Risk Assessment, 19(6), 438–447.

    Google Scholar 

  • Ligmann-Zielinska, A. (2009). The impact of risk-taking attitudes on a land use pattern: An agent based model of residential development. Journal of Land Use Science, 4(4), 215–232.

    Google Scholar 

  • Ligmann-Zielinska, A., & Jankowski, P. (2008). A framework for sensitivity analysis in spatial multiple criteria evaluation. In T. J. Cova., H. J. Miller., K. Beard., A. U. Frank., M. F. Goodchild (Eds.), Geographic Information Science, Proceedings 5th International Conference, GIScience (pp. 217–233). Park City, UT. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Ligmann-Zielinska, A., & Jankowski, P. (2014). Spatially-explicit integrated uncertainty and sensitivity analysis of criteria weights in multicriteria land suitability evaluation. Environmental Modelling and Software, 57, 235–247.

    Google Scholar 

  • Ligmann-Zielinska, A., Jankowski, P., Watkins, J. (Sep 18–21, 2012). Spatial uncertainty and sensitivity analysis for multiple criteria land suitability evaluation. In Proceedings of 7th International Conference on Geographic Information Science, Columbus, OH.

    Google Scholar 

  • Ligmann-Zielinska, A., & Sun, L. (2010). Applying time-dependent variance-based global sensitivity analysis to represent the dynamics of an agent-based model of land use change. International Journal of Geographical Information Science, 24(12), 1829–1850.

    Google Scholar 

  • Lilburne, L., & Tarantola, S. (2009). Sensitivity analysis of spatial models. International Journal of Geographical Information Science, 23(2), 151–168.

    Google Scholar 

  • Lodwick, W. A., Monson, W., & Svoboda, L. (1990). Attribute error and sensitivity analysis of map operations in geographical information systems: Suitability analysis. International Journal of Geographical Information Systems, 4(4), 413–428.

    Google Scholar 

  • Maeda, S., Kawachi, T., Unami, K., Takeuchi, J., Izumi, T., & Chono, S. (2009). Fuzzy optimization model for integrated management of total nitrogen loads from distributed point and nonpoint sources in watershed. Paddy and Water Environment, 7(3), 163–175.

    Google Scholar 

  • Makropoulos, C. K., Argyrou, E., Memon, F. A., & Butler, D. (2007). A suitability evaluation tool for siting wastewater treatment facilities in new urban developments. Urban Water Journal, 4(2), 61–78.

    Google Scholar 

  • Makropoulos, C. K., Butler, D., & Maksimovic, C. (2003). Fuzzy logic spatial decision support system for urban water management. Journal of Water Resources Planning and Management, 129(1), 69–77.

    Google Scholar 

  • Malczewski, J. (1999). GIS and multicriteria decision analysis. New York: Wiley.

    Google Scholar 

  • Malczewski, J. (2000). On the use of weighted liner combination method in GIS: Common and best practice approaches. Transactions in GIS, 4(1), 5–22.

    Google Scholar 

  • Malczewski, J. (2002). Fuzzy screening for land suitability analysis. Geographical and Environmental Modelling, 6(1), 27–39.

    Google Scholar 

  • Malczewski, J. (2006a). GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726.

    Google Scholar 

  • Malczewski, J. (2006b). Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. International Journal of Applied Earth Observation and Geoinformation, 8(4), 270–277.

    Google Scholar 

  • Malczewski, J., & Rinner, C. (2005). Exploring multicriteria decision strategies in GIS with linguistic quantifiers: A case study of residential quality evaluation. Journal of Geographical Systems, 7(2), 249–268.

    Google Scholar 

  • Maness, T., & Farrell, R. (2004). A multi-objective scenario evaluation model for sustainable forest management using criteria and indicators. Canadian Journal of Forest Research, 34(10), 2004–2017.

    Google Scholar 

  • Marinoni, O. (2005). A stochastic spatial decision support system based on PROMETHEE. International Journal of Geographical Information Science, 19(1), 51–68.

    Google Scholar 

  • Marinoni, O. (2006). Benefits of the combined use of stochastic multi-criteria evaluation with principal components analysis. Stochastic Environmental Research and Risk Assessment, 20(5), 319–343.

    Google Scholar 

  • Massam, B. H. (1988). Multi-criteria decision making (MCDM) techniques in planning. Progress in Planning, 30(1), 1–84.

    Google Scholar 

  • Munda, G. (1995). Multicriteria evaluation in a fuzzy environment: Theory and applications in ecological economics. Heidelberg: Physica-Verlag.

    Google Scholar 

  • Natividade-Jesus, E., Coutinho-Rodrigues, J., & Antunes, C. H. (2007). A multicriteria decision support system for housing evaluation. Decision Support Systems, 43(3), 779–790.

    Google Scholar 

  • Openshaw, S., Charlton, M., & Carver, S. (1991). Error propagation: A Monte Carlo simulation. In I. Masser & M. Blakemore (Eds.), Handling geographical information: Methodology and potential applications (pp. 78–101). Burnt Mill, Harlow: Longman.

    Google Scholar 

  • Paez, D., Williamson, I. P., & Bishop, I. (2006). Discuss: A soft computing approach to spatial disaggregation in economic evaluation of public policies. Transactions in GIS, 10(2), 265–278.

    Google Scholar 

  • Palisade Corporation (2012). @RISK: Risk analysis software using monte carlo simulation for excel—at risk—Palisade. Web site available at http://www.palisade.com/risk/. Accessed on July 02, 2014.

  • Pereira, J. M. C., & Duckstein, L. (1993). A multiple criteria decision-making approach to GIS-based land suitability evaluation. International Journal of Geographical Information Systems, 7(5), 407–424.

    Google Scholar 

  • Plata-Rocha, W., Gómez-Delgado, M., & Bosque-Sendra, J. (2010). Sensitivity analysis for spatial simulation of urban growth. Procedia-Social and Behavioral Sciences, 2(6), 7718–7719.

    Google Scholar 

  • Plata-Rocha, W., Gómez-Delgado, M., & Bosque-Sendra, J. (2011). Simulating urban growth scenarios using GIS and multicriteria analysis techniques: A case study of the Madrid region, Spain. Environment and Planning B, 38(6), 1012–1031.

    Google Scholar 

  • Prato, T. (2008). Stochastic multiple attribute evaluation of land use policies. Ecological Modelling, 219(1–2), 115–124.

    Google Scholar 

  • ReVelle, C., Cohon, J. L., & Shobrys, D. E. (1981). Multiple objective facility location: A review. In J. N. Morse (Ed.), Organizations: Multiple agents with multiple criteria (pp. 320–337). Berlin: Springer-Verlag.

    Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Saltelli, A. (2000). What is sensitivity analysis. In A. Saltelli, K. Chan, & M. Scott (Eds.), Sensitivity analysis (pp. 3–12). New York: Wiley.

    Google Scholar 

  • Saltelli, A., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Ratto, M., et al. (2008). Global sensitivity analysis: The primer. New York: Wiley.

    Google Scholar 

  • Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press.

    Google Scholar 

  • Simonovic, S. P., & Nirupama, A. (2005). Spatial multi-objective decision-making under uncertainty for water resources management. Journal of Hydroinformatics, 7(2), 117–133.

    Google Scholar 

  • Stassopoulou, A., Petrou, M., & Kittler, J. (1998). Application of a Bayesian network in a GIS based decision making system. International Journal of Geographical Information Science, 12(1), 23–45.

    Google Scholar 

  • Stelzenmüller, V., Lee, J., Garnacho, E., & Rogers, S. I. (2010). Assessment of a Bayesian belief network-GIS framework as a practical tool to support marine planning. Marine Pollution Bulletin, 60(10), 1743–1754.

    Google Scholar 

  • Stewart, T. J. (2005). Dealing with uncertainties in MCDA. In J. Figueira, S. Greco, & M. Ehrgott (Eds.), Multiple criteria decision analysis—state of the art surveys (pp. 445–470). New York: Springer.

    Google Scholar 

  • Store, R., & Kangas, J. (2001). Integrating spatial multi-criteria evaluation and expert knowledge for GIS-based habitat suitability modeling. Landscape and Urban Planning, 55(2), 79–93.

    Google Scholar 

  • Tenerelli, P., & Carver, S. (2012). Multi-criteria, multi-objective and uncertainty analysis for agro-energy spatial modelling. Applied Geography, 32(2), 724–736.

    Google Scholar 

  • Tkach, R., & Simonovic, S. (1997). A new approach to multicriteria decision making in water resources. Journal of Geographical Information and Decision Analysis, 1(1), 25–43.

    Google Scholar 

  • Vacik, H., & Lexer, M. J. (2001). Application of a spatial decision support system in managing the protection forests of Vienna for sustained yield of water resources. Forest Ecology and Management, 143(1–3), 65–76.

    Google Scholar 

  • Vadrevu, K. P., Eaturu, A., & Badarinath, K. V. S. (2010). Fire risk evaluation using multicriteria analysis—a case study. Environmental Monitoring and Assessment, 166(1–4), 223–239.

    Google Scholar 

  • Wang, X., Yu, S., & Huang, G. H. (2004). Land allocation based on integrated GIS-optimization modeling at a watershed level. Landscape and Urban Planning, 66(2), 61–74.

    Google Scholar 

  • Watthayu, W. (2009). Loopy belief propagation: Bayesian networks for multi-criteria decision making (MCDM). International Journal of Hybrid Information Technology, 2(2), 141–152.

    Google Scholar 

  • Yager, R. R. (1996). Quantifier guided aggregation using OWA operators. International Journal of Intelligent Systems, 11(1), 49–73.

    Google Scholar 

  • Young, J., Rinner, C., & Patychuk, D. (2010). The effect of standardization in multicriteria decision analysis on health policy outcomes. In G. Phillips-Wren, L. C. Jain, K. Nakamatsu, & R. J. Howlett (Eds.), Advances in intelligent decision technologies (pp. 299–307). Berlin: Springer.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Content, 8(3), 338–353.

    Google Scholar 

  • Zadeh, L. A. (1983). A computational approach to fuzzy quantifiers in natural languages. Computers and Mathematics with Applications, 9(1), 149–184.

    Google Scholar 

  • Zimmermann, H. (2000). An application-oriented view of modeling uncertainty. European Journal of Operational Research, 122(2), 190–198.

    Google Scholar 

  • Zubaryeva, A., Thiel, C., Zaccarelli, N., Barbone, E., & Mercier, A. (2012a). Spatial multi-criteria assessment of potential lead markets for electrified vehicles in Europe. Transportation Research Part A: Policy and Practice, 46(9), 1477–1489.

    Google Scholar 

  • Zubaryeva, A., Zaccarelli, N., Del Giudice, C., & Zurlini, G. (2012b). Spatially explicit assessment of local biomass availability for distributed biogas production via anaerobic co-digestion: Mediterranean case study. Renewable Energy, 39(1), 261–270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Malczewski .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malczewski, J., Rinner, C. (2015). Dealing with Uncertainties. In: Multicriteria Decision Analysis in Geographic Information Science. Advances in Geographic Information Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74757-4_7

Download citation

Publish with us

Policies and ethics