Skip to main content

Cross-Cultural Similarities in Topological Reasoning

  • Conference paper
Spatial Information Theory (COSIT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4736))

Included in the following conference series:

Abstract

How do we reason about topological relations? Do people with different cultural backgrounds differ in how they reason about such relations? We conducted two topological reasoning experiments, one in Germany and one in Mongolia to analyze such questions. Topological relations such as “A overlaps B”, “B lies within C” were presented to the participants as premises and they had to find a conclusion that was consistent with the premises (“What is the relation between A and C?”). The problem description allowed multiple possible “conclusions”. Our results, however, indicate that the participants had strong preferences: They consistently preferred one of the possible conclusions and neglected other conclusions, although they were also consistent with the premises. The preferred and neglected conclusions were quite similar in Germany and Mongolia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26, 832–843 (1983)

    Article  MATH  Google Scholar 

  2. Berry, J.W.: Human ecology and cognitive style: Comparative studies in cultural and psychological adaptation. Sage/Halstead/Wiley, New York (1976)

    Google Scholar 

  3. Berry, J.W.: An ecological approach to understanding cognition across cultures. In: Altarriba, J. (ed.) Cognition and culture: A cross-cultural approach to cognitive psychology, pp. 361–375. North-Holland, Amsterdam (1993)

    Google Scholar 

  4. Berry, J.W., Saraswathi, T.S., Dasen, P.R. (eds.): Handbook of cross-cultural Psychology, Allyn & Bacon, Boston, MA. Basic processes and human development, vol. II (1997)

    Google Scholar 

  5. Byrne, R.M.J., Johnson-Laird, P.N.: Spatial reasoning. Journal of Memory and Language 28, 564–575 (1989)

    Article  Google Scholar 

  6. Chan, T.T., Bergen, B.: Writing direction influences spatial cognition. In: Bara, B., Barsalou, L.W., Bucciarelli, M. (eds.) Proceedings of the 27th Annual Conference of the Cognitive Science Society, pp. 412–417. Erlbaum, Mahwah, NJ (2005)

    Google Scholar 

  7. Cohn, A.G.: Qualitative spatial representation and reasoning techniques. In: Brewka, G., Habel, C., Nebel, B. (eds.) KI-97: Advances in Artificial Intelligence, pp. 1–30. Springer, Heidelberg (1997)

    Google Scholar 

  8. Egenhofer, M.J.: Reasoning about binary topological relations. In: Günther, O., Schek, H.J. (eds.) Proceedings of the Second Symposium on Large Scaled Spatial Databases, pp. 143–160. Springer, Berlin (1991)

    Google Scholar 

  9. Egenhofer, M.J., Franzosa, R.: Point-set topological spatial relations. International Journal of Geographical Information Systems 2, 133–152 (1991)

    Google Scholar 

  10. Egenhofer, M.J., Clementini, E., Di Felice, P.: Topological relations between regions with holes. International Journal of Geographical Information Systems 2, 129–144 (1994)

    Google Scholar 

  11. Fangmeier, T., Knauff, M., Ruff, C.C., Sloutsky, V., FMRI,: evidence for a three-stage model of deductive reasoning. Journal of Cognitive Neuroscience 18, 320–334 (2006)

    Article  Google Scholar 

  12. Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelligence 54, 199–227 (1992)

    Article  Google Scholar 

  13. Hunter, I.M.L.: The solving of three-term series problems. British Journal of Psychology 48, 286–298 (1957)

    Google Scholar 

  14. Jahn, G., Knauff, M., Johnson-Laird, P.N.: Preferred Mental Models in Reasoning about Spatial Relations. Memory & Cognition (to appear)

    Google Scholar 

  15. Janhunen, J. (ed.): The Mongolic languages. Routledge, London (2003)

    Google Scholar 

  16. Johnson-Laird, P.N.: The three-term series problem. Cognition 1, 57–82 (1972)

    Article  Google Scholar 

  17. Johnson-Laird, P.N.: Mental models. Towards a cognitive science of language, inference, and consciousness. Harvard University Press, Cambridge, MA (1983)

    Google Scholar 

  18. Johnson-Laird, P.N.: Mental models and deduction. Trends in Cognitive Sciences 5, 434–442 (2001)

    Article  Google Scholar 

  19. Johnson-Laird, P.N., Byrne, R.M.J.: Deduction. Erlbaum, Hove, UK (1991)

    Google Scholar 

  20. Knauff, M., Rauh, R., Schlieder, C.: Preferred mental models in qualitative spatial reasoning: A cognitive assessment of Allen’s calculus. In: Moore, J.D., Lehman, J.F. (eds.) Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society, pp. 200–205. Lawrence Erlbaum Associates, Mahwah, NJ (1995)

    Google Scholar 

  21. Knauff, M.: The cognitive adequacy of Allen’s interval calculus for qualitative spatial representation and reasoning. Spatial Cognition and Computation 1, 261–290 (1999)

    Article  Google Scholar 

  22. Levinson, S., Kita, S., Haun, D., Rasch, B.: Returning the tables: Language affects spatial reasoning. Cognition 84, 155–188 (2002)

    Article  Google Scholar 

  23. Levinson, S.C., Meira, S.: ’Natural concepts’ in the spatial topological domain. Language 79(3), 485–516 (2003)

    Article  Google Scholar 

  24. Manktelow, K.I.: Reasoning and Thinking. Psychology Press, Hove, UK (1999)

    Google Scholar 

  25. Mark, D., Egenhofer, M.: Modeling spatial relations between lines and regions: combining formal mathematical models and human subjects testing. Cartography and Geographic Information Systems 21, 195–212 (1994)

    Google Scholar 

  26. Mark, D., Comas, D., Egenhofer, M., Freundschuh, S., Gould, J., Nunes, J.: Evaluating and refining computational models of spatial relations through cross-linguistic human-subjects testing. In: Frank, A., Kuhn, W. (eds.) Spatial Information Theory: A theoretical basis for GIS, pp. 553–568. Springer, Berlin (1995)

    Google Scholar 

  27. Ragni, M., Fangmeier, T., Webber, L., Knauff, M.: Complexity in Spatial Reasoning. In: Proceedings of the 28th Annual Cognitive Science Conference, Lawrence Erlbaum Associates, Mahwah, NJ (2006)

    Google Scholar 

  28. Ragni, M., Knauff, M., Nebel, B.: A Computational Model for Spatial Reasoning with Mental Models. In: Bara, B.G., Barsalou, L., Bucciarelli, M. (eds.) Proceedings of the 27th Annual Cognitive Science Conference, pp. 1064–1070. Lawrence Erlbaum, Mahwah, NJ (2005)

    Google Scholar 

  29. Ragni, M., Wölfl, S.: On Generalized Neighborhood Graphs. In: Furbach, U. (ed.) KI 2005: Advances in Artificial Intelligence, 28th Annual German Conference on AI, Springer, Berlin (2005)

    Google Scholar 

  30. Randell, D.A., Cohn, A.G., Cui, Z.: Computing transitivity tables: A challenge for automated theory provers. In: Proceedings of the 11th CADE, Springer, Berlin (1992)

    Google Scholar 

  31. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based and regions and connection. In: Nebel, B., Swarthout, W., Rich, C. (eds.) Proceedings of the third Conference on Principles of Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, Cambridge, MA (1992)

    Google Scholar 

  32. Rauh, R., Hagen, C., Knauff, M., Kuβ, T., Schlieder, C., Strube, G.: Preferred and alternative mental models in spatial reasoning. Spatial Cognition and Computation (2005)

    Google Scholar 

  33. Schlieder, C., Berendt, B.: Mental model construction in spatial reasoning: A comparison of two computational theories. In: Schmid, U., Krems, J.F., Wysotzki, F. (eds.) Mind modelling: A cognitive science approach to reasoning, pp. 133–162. Pabst Science Publishers, Lengerich (1998)

    Google Scholar 

  34. Spalek, T.M., Hammad, S.: The left-to-right bias in inhibition of return is due to the direction of reading. Psychological Science 16, 15–18 (2005)

    Article  Google Scholar 

  35. Vögele, T., Schlieder, C., Visser, U.: Intuitive Modelling of Place Name Regions for Spatial Information Retrieval. In: Kuhn, W., Worboys, M.F. Timpf, S., (eds.): Spatial Information Theory. Foundations of Geographic Information Science, International Conference, Proceedings of the COSIT 2003. Springer, Berlin (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stephan Winter Matt Duckham Lars Kulik Ben Kuipers

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ragni, M., Tseden, B., Knauff, M. (2007). Cross-Cultural Similarities in Topological Reasoning. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds) Spatial Information Theory. COSIT 2007. Lecture Notes in Computer Science, vol 4736. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74788-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74788-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74786-4

  • Online ISBN: 978-3-540-74788-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics