Skip to main content

Summary

We present a tetrahedral mesh improvement schedule that usually creates meshes whose worst tetrahedra have a level of quality substantially better than those produced by any previous method for tetrahedral mesh generation or “mesh clean-up.” Our goal is to aggressively optimize the worst tetrahedra, with speed a secondary consideration. Mesh optimization methods often get stuck in bad local optima (poor-quality meshes) because their repertoire of mesh transformations is weak. We employ a broader palette of operations than any previous mesh improvement software. Alongside the best traditional topological and smoothing operations, we introduce a topological transformation that inserts a new vertex (sometimes deleting others at the same time). We describe a schedule for applying and composing these operations that rarely gets stuck in a bad optimum. We demonstrate that all three techniques—smoothing, vertex insertion, and traditional transformations—are substantially more effective than any two alone. Our implementation usually improves meshes so that all dihedral angles are between 31° and 149°, or (with a different objective function) between 23° and 136°

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. Variational Tetrahedral Meshing. ACM Transactions on Graphics 24:617–625, 2005. Special issue on Proceedings of SIGGRAPH 2005.

    Article  Google Scholar 

  2. Randolph E. Bank and L. Ridgway Scott. On the Conditioning of Finite Element Equations with Highly Refined Meshes. SIAM Journal on Numerical Analysis 26(6):1383–1394, December 1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Brière de l’Isle and Paul-Louis George. Optimization of Tetrahedral Meshes. Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations, IMA Volumes in Mathematics and its Applications, volume 75, pages 97–128. 1995.

    Google Scholar 

  4. Scott A. Canann, Michael Stephenson, and Ted Blacker. Optismoothing: An Optimization-Driven Approach to Mesh Smoothing. Finite Elements in Analysis and Design 13:185–190, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  5. James C. Cavendish, David A. Field, and William H. Frey. An Approach to Automatic Three-Dimensional Finite Element Mesh Generation. International Journal for Numerical Methods in Engineering 21(2):329–347, February 1985.

    Article  Google Scholar 

  6. Siu-Wing Cheng, Tamal Krishna Dey, Herbert Edelsbrunner, Michael A. Facello, and Shang-Hua Teng. Sliver Exudation. Journal of the ACM 47(5):883–904, September 2000.

    Article  MathSciNet  Google Scholar 

  7. Hugues L. de Cougny and Mark S. Shephard. Refinement, Derefinement, and Optimization of Tetrahedral Geometric Triangulations in Three Dimensions. Unpublished manuscript, 1995.

    Google Scholar 

  8. Herbert Edelsbrunner and Damrong Guoy. An Experimental Study of Sliver Exudation. Tenth International Meshing Roundtable (Newport Beach, California), pages 307–316, October 2001.

    Google Scholar 

  9. David A. Field. Qualitative Measures for Initial Meshes. International Journal for Numerical Methods in Engineering 47:887–906, 2000.

    Article  MATH  Google Scholar 

  10. Lori A. Freitag, Mark Jones, and Paul Plassman. An Efficient Parallel Algorithm for Mesh Smoothing. Fourth International Meshing Roundtable (Albuquerque, New Mexico), pages 47–58, October 1995.

    Google Scholar 

  11. Lori A. Freitag and Carl Ollivier-Gooch. Tetrahedral Mesh Improvement Using Swapping and Smoothing. International Journal for Numerical Methods in Engineering 40(21):3979–4002, November 1997.

    Article  MATH  MathSciNet  Google Scholar 

  12. William H. Frey. Selective Refinement: A New Strategy for Automatic Node Placement in Graded Triangular Meshes. International Journal for Numerical Methods in Engineering 24(11):2183–2200, November 1987.

    Article  MATH  Google Scholar 

  13. L. R. Hermann. Laplacian-Isoparametric Grid Generation Scheme. Journal of the Engineering Mechanics Division of the American Society of Civil Engineers 102:749–756, October 1976.

    Google Scholar 

  14. P. Jamet. Estimations d’Erreur pour des Élements Finis Droits Presque Dégénérés. RAIRO Analyse Numérique 10:43–61, 1976.

    MathSciNet  Google Scholar 

  15. Barry Joe. Construction of Three-Dimensional Improved-Quality Triangulations Using Local Transformations. SIAM Journal on Scientific Computing 16(6):1292–1307, November 1995.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. T. Klincsek. Minimal Triangulations of Polygonal Domains. Annals of Discrete Mathematics 9:121–123, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  17. Michal Křížek. On the Maximum Angle Condition for Linear Tetrahedral Elements. SIAM Journal on Numerical Analysis 29(2):513–520, April 1992.

    Article  MATH  MathSciNet  Google Scholar 

  18. François Labelle and Jonathan Richard Shewchuk. Isosurface Stuffing: Fast Tetrahedral Meshes with Good Dihedral Angles. ACM Transactions on Graphics 26(3), August 2007. Special issue on Proceedings of SIGGRAPH 2007.

    Google Scholar 

  19. V. N. Parthasarathy, C. M. Graichen, and A. F. Hathaway. A Comparison of Tetrahedron Quality Measures. Finite Elements in Analysis and Design 15(3):255–261, January 1994.

    Article  Google Scholar 

  20. V. N. Parthasarathy and Srinivas Kodiyalam. A Constrained Optimization Approach to Finite Element Mesh Smoothing. Finite Elements in Analysis and Design 9:309–320, 1991.

    Article  MATH  Google Scholar 

  21. Joachim Schöberl. NETGEN: An Advancing Front 2D/3D-Mesh Generator Based on Abstract Rules. Computing and Visualization in Science 1(1):41–52, July 2007.

    Google Scholar 

  22. Jonathan Richard Shewchuk. Tetrahedral Mesh Generation by Delaunay Refinement. Proceedings of the Fourteenth Annual Symposium on Computational Geometry (Minneapolis, Minnesota), pages 86–95, June 1998.

    Google Scholar 

  23. Jonathan Richard Shewchuk Two Discrete Optimization Algorithms for the Topological Improvement of Tetrahedral Meshes. Unpublished manuscript at http://www.cs.cmu.edu/∼jrs/jrspapers.html, 2002.

    Google Scholar 

  24. Jonathan Richard Shewchuk What Is a Good Linear Element? Interpolation, Conditioning, and Quality Measures. Eleventh International Meshing Roundtable (Ithaca, New York), pages 115–126, September 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klingner, B.M., Shewchuk, J.R. (2008). Aggressive Tetrahedral Mesh Improvement. In: Brewer, M.L., Marcum, D. (eds) Proceedings of the 16th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75103-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75103-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75102-1

  • Online ISBN: 978-3-540-75103-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics