Skip to main content

Mapping by Seeing – Wearable Vision-Based Dead-Reckoning, and Closing the Loop

  • Conference paper
Smart Sensing and Context (EuroSSC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4793))

Included in the following conference series:

Abstract

We introduce, characterize and test a vision-based dead-reckoning system for wearable computing that allows to track the user’s trajectory in an unknown and non-instrumented environment by integrating the optical flow. Only a single inexpensive camera worn on the body is required, which may be reused for other purposes such as HCI. Result show that distance estimates are accurate (6-12%) while rotation tends to be underestimated. The accumulation of errors is compensated by identifying previously visited locations and “closing the loop”; it results in greatly enhanced accuracy. Opportunistic use of wireless signatures is used to identify similar locations. No a-priori knowledge of the environment such as map is needed, therefore the system is well-suited for wearable computing. We identify the limitations of this approach and suggest future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context awareness. Technical Report GITGVU-99-22, Georgia Tech. (1999)

    Google Scholar 

  2. Lukowicz, P., Junker, H., Staeger, M., von Bueren, T., Troester, G.: WearNET: A distributed multi-sensor system for context aware wearables. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 361–370. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Simcock, T., Hillenbrand, P., Thomas, B.H.: Developing a location based tourist guide application. In: Johnson, C., Montague, P., Steketee, C. (eds.) Conferences in Research and Practice in Information Technology, Australian Computer Society, pp. 177–183 (2003)

    Google Scholar 

  4. Patterson, D.J., Liao, L., Fox, D., Kautz, H.: Inferring high-level behavior from low-level sensors. In: Goos, G., Hartmanis, J., van Leeuwen, J. (eds.) Proc. of the 5th Int. Conf. on Ubiquitous Computing, pp. 73–89. Springer, Heidelberg (2003)

    Google Scholar 

  5. Ashbrook, D., Starner, T.: Using gps to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing 7(5), 275–286 (2004)

    Article  Google Scholar 

  6. Haeberlen, A., Flannery, E., Ladd, A.M., Rudys, A., Wallach, D.S., Kavraki, L.E.: Practical robust localization over large-scale 802.11 wireless networks. In: Proc. of the 10th annual international conference on Mobile computing and networking, pp. 70–84. ACM Press, New York (2004)

    Chapter  Google Scholar 

  7. Cavalieri, S.: A novel approach for localisation based on wi-fi. In: Proc. of the 3rd Int. Conf. on Industrial Informatics (INDIN), pp. 234–239 (2005)

    Google Scholar 

  8. Otsason, V., Varshavsky, A., La Marca, A., de Lara, E.: Accurate gsm indoor localization. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 141–158. Springer, Heidelberg (2005)

    Google Scholar 

  9. La Marca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P., Borriello, G., Schilit, B.: Place lab: Device positioning using radio beacons in the wild. In: Proc. of Pervasive Computing, pp. 116–133. Springer, Heidelberg (2005)

    Google Scholar 

  10. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. IEEE Computer, 57–66 (2001)

    Google Scholar 

  11. Lee, S.W., Mase, K.: Activity and location recognition using wearable sensors. Pervasive Computing 1(3), 24–32 (2002)

    Article  Google Scholar 

  12. Randell, C., Djiallis, C., Muller, H.: Personal position measurement using dead reckoning. In: ISWC 2003. Proc. of the 7th IEEE Int. Symposium on Wearable Computers, pp. 166–173. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  13. Schindler, G., Metzger, C., Starner, T.: A wearable interface for topological mapping and localization in indoor environments. In: Hazas, M., Krumm, J., Strang, T. (eds.) LoCA 2006. LNCS, vol. 3987, pp. 64–73. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Schilstra, C., Van Hateren, J.H.: Blowfly flight and optic flow I: thorax kinematics and flight dynamics. The Journal of Experimental Biology 202(11), 1481–1490 (1999)

    Google Scholar 

  15. Ellmore, T.M.: Human path integration by optic flow. Master’s thesis, Department of Psychology, The University of Arizona (2004)

    Google Scholar 

  16. Frenz, H., Bremmer, F., Lappe, M.: Discrimination of travel distance from ‘situated’ optic flow. Vision Research 43(20), 2173–2183 (2003)

    Article  Google Scholar 

  17. Frenz, H., Lappe, M.: Absolute travel distance from optic flow. Vision Research 45(13), 1679–1692 (2005)

    Article  Google Scholar 

  18. Srinivasan, M.V., Chahl, J.S., Zhang, S.W.: Robot navigation by visual dead-reckoning: inspiration from insects. International Journal of Pattern Recognition and Artificial Intelligence 11(1), 35–47 (1997)

    Article  Google Scholar 

  19. De Souza, G.N., Kak, A.C.: Vision for mobile robot navigation: A survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)

    Article  Google Scholar 

  20. Kröse, B., Dev, A., Groen, F.: Heading direction of a mobile robot from the optical flow. Image and Vision Computing 18(5), 415–424 (2000)

    Article  Google Scholar 

  21. Nagatani, K., Tachibana, S., Sofue, M., Tanaka, Y.: Improvement of odometry for omnidirectional vehicle using optical flow information. In: IEEE/RSJ Int. Conference on Intelligent Robots and Systems, pp. 468–473 (2000)

    Google Scholar 

  22. Giachetti, A., Campani, M., Torre, V.: The use of optical flow for road navigation. IEEE Transactions on Robotics and Automation 14(1), 34–48 (1998)

    Article  Google Scholar 

  23. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  24. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI. Proc. of the 7th Int. Joint Conf. on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  25. Nagle, M.G., Srinivasan, M.V., Wilson, D.L.: Image interpolation technique for measurement of egomotion in 6 degrees of freedom. Journal of the Optical Society of America A: Optics, Image Science, and Vision 14(12), 3233–3241 (1997)

    Article  Google Scholar 

  26. Newman, P., Ho, K.: Slam- loop closing with visually salient features. In: IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 635–642. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  27. de la Hamette, P., Tröster, G.: Architecture and applications of the fingermouse: a smart stereo camera for wearable computing HCI. Personal and Ubiquitous Computing (online first) (2007)

    Google Scholar 

  28. Campbell, J., Sukthankar, R., Nourbakhsh, I.: Techniques for evaluating optical flow for visual odometry in extreme terrain. In: Proc. of Intelligent Robots and Systems (IROS), pp. 3704–3711 (2004)

    Google Scholar 

  29. Srinivasan, M.V.: An image-interpolation technique for the computation of optic flow and egomotion. Biological Cybernetics 71(5), 401–415 (1994)

    MATH  Google Scholar 

  30. Liu, S.C.: A neuromorphic avlsi model of global motion processing in the fly. IEEE Trans. on Circuits and Systems 47(12), 1458–1467 (2000)

    Article  Google Scholar 

  31. Stocker, A., Douglas, R.: Analog integrated 2D optical flow sensor with programmable pixels. In: Int. Symposium on Circuits and Systems ISCAS, pp. 121–138 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerd Kortuem Joe Finney Rodger Lea Vasughi Sundramoorthy

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roggen, D., Jenny, R., de la Hamette, P., Tröster, G. (2007). Mapping by Seeing – Wearable Vision-Based Dead-Reckoning, and Closing the Loop. In: Kortuem, G., Finney, J., Lea, R., Sundramoorthy, V. (eds) Smart Sensing and Context. EuroSSC 2007. Lecture Notes in Computer Science, vol 4793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75696-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75696-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75695-8

  • Online ISBN: 978-3-540-75696-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics