Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1927))

  • 3688 Accesses

Symmetrization is one of the most powerful mathematical tools with several applications both in Analysis and Geometry. Probably the most remarkable application of Steiner symmetrization of sets is the De Giorgi proof (see [14], [25]) of the isoperimetric property of the sphere, while the spherical symmetrization of functions has several applications to PDEs and Calculus of Variations and to integral inequalities of Poincaré and Sobolev type (see for instance [23], [24], [19], [20])

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Ambrosio, N. Fusco & D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford University Press, Oxford, 2000

    MATH  Google Scholar 

  2. A. Baernstein II, A unified approach to symmetrization, in Partial differential equations of elliptic type, A. Alvino, E. Fabes & G. Talenti eds., Symposia Math. 35, Cambridge Univ. Press, 1994

    Google Scholar 

  3. J. Bourgain, J. Lindenstrauss & V. Milman, Estimates related to Steiner symmetrizations, in Geometric aspects of functional analysis, 264-273, Lecture Notes in Math. 1376, Springer, Berlin, 1989

    Chapter  Google Scholar 

  4. F. Brock, Weighted Dirichlet-type inequalities for Steiner Symmetrization, Calc. Var., 8 (1999), 15-25

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Brothers & W. Ziemer, Minimal rearrangements of Sobolev functions, J. reine. angew. Math., 384 (1988), 153-179

    MATH  MathSciNet  Google Scholar 

  6. Yu.D. Burago & V.A. Zalgaller, Geometric inequalities, Springer, Berlin, 1988

    MATH  Google Scholar 

  7. A. Burchard, Steiner symmetrization is continuous in W 1,p , Geom. Funct. Anal. 7 (1997), 823-860

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Carlen & M. Loss, Extremals of functionals with competing symmetries, J. Funct. Anal. 88 (1990), 437-456

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Chlebik, A. Cianchi & N. Fusco, Perimeter inequalities for Steiner symmetrization: cases of equalities, Annals of Math., 165 (2005), 525-555

    Article  MathSciNet  Google Scholar 

  10. A. Cianchi & N. Fusco, Functions of bounded variation and rearrangements, Arch. Rat. Mech. Anal. 165 (2002), 1-40

    Article  MATH  MathSciNet  Google Scholar 

  11. A.Cianchi & N.Fusco, Minimal rearrangements, strict convexity and critical points, to appear on Appl. Anal.

    Google Scholar 

  12. E. De Giorgi, Su una teoria generale della misura (r − 1)-dimensionale in uno spazio a r dimensioni, Ann. Mat. Pura Appl. (4), 36 (1954), 191-213

    Article  MATH  MathSciNet  Google Scholar 

  13. E. De Giorgi, Nuovi teoremi relativi alle misure (r − 1)-dimensionali in uno spazio a r dimensioni, Ricerche Mat., 4 (1955), 95-113

    MATH  MathSciNet  Google Scholar 

  14. E. De Giorgi, Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I,5 (1958), 33-44

    MathSciNet  Google Scholar 

  15. L.C. Evans & R.F. Gariepy, Lecture notes on measure theory and fine properties of functions, CRC Press, Boca Raton, 1992

    Google Scholar 

  16. H. Federer, Geometric measure theory, Springer, Berlin, 1969

    MATH  Google Scholar 

  17. A. Ferone & R. Volpicelli, Minimal rearrangements of Sobolev functions: a new proof, Ann. Inst. H.Poincaré, Anal. Nonlinéaire 20 (2003), 333-339

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Giaquinta, G. Modica & J. Souček, Cartesian currents in the calculus of variations, Part I: Cartesian currents, Part II: Variational integrals, Springer, Berlin, 1998

    Google Scholar 

  19. B. Kawohl, Rearrangements and level sets in PDE, Lecture Notes in Math. 1150, Springer, Berlin, 1985

    Google Scholar 

  20. B. Kawohl, On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems, Arch. Rat. Mech. Anal. 94 (1986), 227-243

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Pólya & G. Szegö, Isoperimetric inequalities in mathematical physics, Annals of Mathematical Studies 27, Princeton University Press, Princeton, 1951

    Google Scholar 

  22. Steiner, Einfacher Beweis der isoperimetrischen Hauptsätze, J. reine angew Math. 18 (1838), 281-296, and Gesammelte Werke, Vol. 2, 77-91, Reimer, Berlin, 1882

    Google Scholar 

  23. G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976),353-372

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl. 120 (1979), 159-184

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Talenti, The standard isoperimetric theorem, in Handbook of convex geom- etry, P.M.Gruber and J.M.Wills eds, North-Holland, Amsterdam, 1993

    Google Scholar 

  26. A.I. Vol’pert, Spaces BV and quasi-linear equations, Math. USSR Sb., 17 (1967),225-267

    Article  Google Scholar 

  27. W.P. Ziemer, Weakly differentiable functions, Springer, New York, 1989

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fusco, N. (2008). Geometrical Aspects of Symmetrization. In: Dacorogna, B., Marcellini, P. (eds) Calculus of Variations and Nonlinear Partial Differential Equations. Lecture Notes in Mathematics, vol 1927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75914-0_5

Download citation

Publish with us

Policies and ethics