Skip to main content

Improved Background Mixture Models for Video Surveillance Applications

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4843))

Included in the following conference series:

Abstract

Background subtraction is a method commonly used to segment objects of interest in image sequences. By comparing new frames to a background model, regions of interest can be found. To cope with highly dynamic and complex environments, a mixture of several models has been proposed. This paper proposes an update of the popular Mixture of Gaussian Models technique. Experimental analysis shows a lack of this technique to cope with quick illumination changes. A different matching mechanism is proposed to improve the general robustness and a comparison with related work is given. Finally, experimental results are presented to show the gain of the updated technique, according to the standard scheme and the related techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dick, A., Brooks, M.J.: Issues in automated visual surveillance. In: Proceedings of International Conference on Digital Image Computing: Techniques and Applications, pp. 195–204 (2003)

    Google Scholar 

  2. Wu, J., Trivedi, M.: Performance Characterization for Gaussian Mixture Model Based Motion Detection Algorithms. In: Proceedings of the IEEE International Conference on Image Processing, pp. 97–100. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  3. Javed, O., Shafique, K., Shah, M.: A Hierarchical Approach to Robust Background Subtraction using Color and Gradient Information. In: Proceedings of the Workshop on Motion and Video Computing, pp. 22–27 (2002)

    Google Scholar 

  4. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and Practice of Background Maintenance. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 255–261. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  5. Lee, D.: Online Adaptive Gaussian Mixture Learning for Video Applications. Statistical Methods in Video Processing. LNCS, pp. 105–116 (2004)

    Google Scholar 

  6. Zhang, Y., Liang, Z., Hou, Z., Wang, H., Tan, M.: An Adaptive Mixture Gaussian Background Model with Online Background Reconstruction and Adjustable Foreground Mergence Time for Motion Segmentation. In: Proceedings of the IEEE International Conference on Industrial Technology, pp. 23–27. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  7. Tian, Y., Lu, M., Hampapur, A.: Robust and Efficient Foreground Analysis for Real-time Video Surveillance. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1182–1187. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  8. Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting Moving Shadows: Algorithms and Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 918–923 (2003)

    Article  Google Scholar 

  9. Cucchiara, R., Grana, C., Neri, G., Piccardi, M., Prati, A.: The Sakbot System for Moving Object Detection and Tracking. Video-Based Surveillance Systems - Computer Vision and Distributed Processing, pp. 145–157 (2001)

    Google Scholar 

  10. Stauffer, C., Grimson, W.E.L.: Learning Patterns of Activity Using Real-Time Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 747–757 (2000)

    Article  Google Scholar 

  11. Brown, L.M., Senior, A.W., Tian, Y., Connell, J., Hampapur, A., Shu, C., Merkl, H., Lu, M.: Performance Evaluation of Surveillance Systems Under Varying Conditions. In: Proceedings of IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (2005) http://www.research.ibm.com/peoplevision/performanceevaluation.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Poppe, C., Martens, G., Lambert, P., Van de Walle, R. (2007). Improved Background Mixture Models for Video Surveillance Applications. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76386-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76385-7

  • Online ISBN: 978-3-540-76386-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics