Skip to main content

Nonlinear Models for Determining Mode Choice

(Accuracy Is Not Always the Optimal Goal)

  • Conference paper
Progress in Artificial Intelligence (EPIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4874))

Included in the following conference series:

Abstract

Due to the increasing complexity in transportation systems, one needs to search for different ways to model the separate components of these systems. A general transportation system comprises components/models concerning mode choice, travel duration, trip distance, departure time, accompanying individuals, etc. This paper tries to discover whether semi- and nonlinear models bring an added value to transportation analysis in general and mode choice modelling in particular. Linear (logistic regression), semi-linear (multiple fractional polynomials) and nonlinear (support vector machines and classification and regression trees) models are applied to several binary settings and compared to each other based on sensitivity (i.e. the proportion of positive cases that are predicted correctly). In general, one can state that on skewed data sets, linear and semi-linear models tend to perform better, whereas on more balanced data sets both nonlinear models yield better results. Future research will take a closer look at other extensions of the well-established linear regression model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, A.: An Introduction to Categorical Data Analysis. Wiley Series in Probability and Statistics. Wiley, Chichester (1996)

    MATH  Google Scholar 

  2. Arentze, T.A., Timmermans, H.J.P.: Albatross: A Learning-Based Transportation Oriented Simulation System. Eindhoven University of Technology (2000)

    Google Scholar 

  3. Ben Akiva, M., Lerman, S.R.: Discrete Choice Analysis Theory and Application to Travel Demand. MIT Press, Cambridge (1985)

    Google Scholar 

  4. Bhat, C.R., Guo, J.: A mixed spatially correlated Logit model: formulation and application to residential choice modeling. Paper presented at the 82nd Annual Meeting of the Transportation Research Board, Washington, D.C (2003)

    Google Scholar 

  5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth Statistics/Probability Series (1984)

    Google Scholar 

  6. Box, G.E.P., Tidwell, P.W.: Transformations of the independent variables. Technom. 4, 531–550 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  8. Friedman, J.H.: Multivariate adaptive regression splines. An. Stat. 19(1), 1–67 (1991)

    MATH  Google Scholar 

  9. Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Chapman and Hall, London (1990)

    MATH  Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning; Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  11. Hensher, D.A., Ton, T.T.: A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice. Transp. Res. 36E, 155–172 (2000)

    Google Scholar 

  12. Hensher, D., Greene, W.H.: The mixed logit model: The state of practice. Transportation 30(2), 133–176 (2003)

    Article  Google Scholar 

  13. Koppelman, F., Wen, C.-H.: The Paired Combinatorial Logit model: Properties, estimation and application. Transp. Res. B. 34(2), 75–89 (2000)

    Article  Google Scholar 

  14. Moons, E., Wets, G., Aerts, M.: Nonlinear models in transportation. In: Proc. of Conf. on Progress in Activity-Based Analysis, Maastricht, The Netherlands (2004a)

    Google Scholar 

  15. Moons, E., Aerts, M., Wets, G.: The application of fractional polynomials and support vector machines in transportation analysis. Paper accepted for presentation at the Joint Stat. Meetings, Toronto, Canada (2004b)

    Google Scholar 

  16. Neter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W.: Applied Linear Statistical Models. Irwin (1996)

    Google Scholar 

  17. Nijkamp, P., Reggiani, A., Tritapepe, T.: Modelling inter-urban transport flows in Italy: A Comparison between neural network analysis and logit analysis. Transpn. Res.-C 4(6), 323–338 (1996)

    Article  Google Scholar 

  18. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, California (1988)

    Google Scholar 

  19. Reinsch, C.H.: Smoothing by spline functions. Num. Math. 10, 177–183 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  20. Royston, P., Altman, D.G.: Regression using fractional polynomials of continuous covariates: parsimonious parametric modeling. Appl. Stat. 43, 429–467 (1994)

    Article  Google Scholar 

  21. Royston, P., Ambler, G., Sauerbrei, W.: The use of fractional polynomials to model continuous risk variables in epidemiology. Int. J. of Epi. 28, 964–974 (1999)

    Article  Google Scholar 

  22. Sadek, A.W.: Artificial Intelligence Applications in Transportation. In: Transportation Research Circular E-C113, TRB (2007)

    Google Scholar 

  23. Sauerbrei, W., Royston, P.: Building multivariable prognostic and diagnostic models: transformation of the predictors using fractional polynomials. J. R. Stat. Soc., Series A 162, 71–94 (1999)

    Article  Google Scholar 

  24. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1996)

    Google Scholar 

  25. Zhang, H.P., Singer, B.: Recursive Partitioning in the Health Sciences. Springer, New York (1999)

    MATH  Google Scholar 

  26. Zurada, J.M.: Introduction to Artificial Neural Systems. W. Publishing Company (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Neves Manuel Filipe Santos José Manuel Machado

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moons, E., Wets, G., Aerts, M. (2007). Nonlinear Models for Determining Mode Choice. In: Neves, J., Santos, M.F., Machado, J.M. (eds) Progress in Artificial Intelligence. EPIA 2007. Lecture Notes in Computer Science(), vol 4874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77002-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77002-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77000-8

  • Online ISBN: 978-3-540-77002-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics