Skip to main content

Joint Source-Cryptographic-Channel Coding Based on Linear Block Codes

  • Conference paper
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4851))

Abstract

This paper proposes a joint coding with three functions: source coding, channel coding, and public-key encryption. A codeword is simply generated as a product of an encoding matrix and a sparse information word. This encoding method has much lower encoding complexity than the conventional coding techniques in which source coding, encryption, and channel coding are successively applied to an information word. The encoding matrix is generated by using two linear error control codes and randomly generated nonsingular matrices. Encryption is based on the intractableness of factorizing a matrix into randomly constructed factor matrices, and of decoding an error control code defined by a random parity-check matrix. Evaluation shows that the proposed joint coding gives a lower bit error rate and a superior compression ratio than the conventional codings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huffman, D.A.: A Method for the Construction of Minimum Redundancy Codes. Proc. of the IRE 40(9), 1098–1101 (1952)

    Article  Google Scholar 

  2. Ziv, J., Lempel, A.: A Universal Algorithm for Sequential Data Compression. IEEE Trans. Inform. Theory 23(3), 337–343 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  3. Wallace, G.K.: The JPEG Still Picture Compression Standard. Communications of the ACM 34(4), 30–44 (1991)

    Article  Google Scholar 

  4. Wieqand, T., Sullivan, G.J., Bjntegaard, G., Luthra, A.: Overview of the H.264/AVC Video Coding Standard. IEEE Trans. Circuits and Systems for Video Technology 13(7), 560–576 (2003)

    Article  Google Scholar 

  5. Fujiwara, E.: Code Design for Dependable Systems: Theory and Practical Applications. Wiley, Chichester (2006)

    MATH  Google Scholar 

  6. MacKay, D.J.C.: Good Error-Correcting Codes Based on Very Sparse Matrices. IEEE Trans. Inform. Theory 45(2), 399–431 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Richardson, T.J., Shokrollahi, M.A., Urbanke, R.L.: Design of Capacity-Approaching Irregular Low-Density Parity-Check Codes. IEEE Trans. Inform. Theory 47(2), 619–637 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fujiwara, E., Kitakami, M.: Unequal Error Protection in Ziv-Lempel Coding. IEICE Trans. Inform. and Systems E86-D E86-D(12), 2595–2600 (2003)

    Google Scholar 

  9. Horn, U., Stuhlmüller, K., Ling, M., Girod, B.: Robust Internet Video Transmission Based on Scalable Coding and Unequal Error Protection. Signal Processing: Image Communication 15(1-2), 77–94 (1999)

    Article  Google Scholar 

  10. Zhong, W., Garcia-Frias, J.: LDGM Codes dor Channel Coding and Joint Source-Channel Coding of Correlated Sources. EURASIP J. Applied Signal Processing 2005(6), 942–953 (2005)

    Article  MATH  Google Scholar 

  11. McEliece, R.J.: A Public-Key Cryptosystem Based on Algebraic Coding Theory. The Deep Space Network Progress Report, DSN PR, 42–44, 114–116 (1978)

    Google Scholar 

  12. Kabashima, Y., Murayama, T., Saad, D.: Cryptographical Properties of Ising Spin Systems. Physical Review Letters 84(9), 2030–2033 (2000)

    Article  Google Scholar 

  13. Kobara, K., Imai, H.: Semantically Secure McEliece Public-Key Cryptosystem. IEICE Trans. Fundamentals 85(1), 74–83 (2002)

    Google Scholar 

  14. Niederreiter, H.: Knapsack-Type Cryptosystems and Algebraic Coding Theory. Problems of Control and Information Theory 15(2), 157–166 (1986)

    MathSciNet  Google Scholar 

  15. Li, Y.X., Deng, R.H., Wang, X.M.: On the Equivalence of McEliece’s and Niederreiter’s Public-Key Cryptosystems. IEEE Trans. Inform, Theory 40(1), 271–273 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fujiwara, E., Namba, K., Kitakami, M.: Parallel Decoding for Burst Error Control Codes. Electronics and Communications in Japan, Part. III 87(1), 38–48 (2004)

    Article  Google Scholar 

  17. http://lthcwww.epfl.ch/research/ldpcopt/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Serdar BoztaÅŸ Hsiao-Feng (Francis) Lu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaneko, H., Fujiwara, E. (2007). Joint Source-Cryptographic-Channel Coding Based on Linear Block Codes. In: BoztaÅŸ, S., Lu, HF.(. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2007. Lecture Notes in Computer Science, vol 4851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77224-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77224-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77223-1

  • Online ISBN: 978-3-540-77224-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics