Skip to main content

AI in Locomotion: Challenges and Perspectives of Underactuated Robots

  • Chapter
50 Years of Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4850))

Abstract

This article discusses the issues of adaptive autonomous navigation as a challenge of artificial intelligence. We argue that, in order to enhance the dexterity and adaptivity in robot navigation, we need to take into account the decentralized mechanisms which exploit physical system-environment interactions. In this paper, by introducing a few underactuated locomotion systems, we explain (1) how mechanical body structures are related to motor control in locomotion behavior, (2) how a simple computational control process can generate complex locomotion behavior, and (3) how a motor control architecture can exploit the body dynamics through a learning process. Based on the case studies, we discuss the challenges and perspectives toward a new framework of adaptive robot control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leonard, J.J., Durrant-Whyte, H.F.: Simultaneous map building and localization for an autonomous mobile robot. In: IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp. 1442–1447 (1991)

    Google Scholar 

  2. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)

    Article  Google Scholar 

  3. Arkin, R.C.: Behavior-based robotics. MIT Press, Cambridge (1998)

    Google Scholar 

  4. Brooks, R.A.: A robot that walks: Emergent behaviors from a carefully evolved network. Neural Computation 1(2), 253–262 (1989)

    Article  Google Scholar 

  5. Braitenberg, V.: Vehicles - Experiments in synthetic psychology. MIT Press, Cambridge (1984)

    Google Scholar 

  6. Pfeifer, R., Scheier, C.: Understanding Intelligence. The MIT Press, Cambridge (1999)

    Google Scholar 

  7. Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.): Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139. Springer, Heidelberg (2004)

    Google Scholar 

  8. Pfeifer, R., Iida, F., Bongard, J.: New robotics: Design principles for intelligent systems. Artificial Life 11(1-2), 99–120 (2005)

    Article  Google Scholar 

  9. McGeer, T.: Passive Dynamic Walking. The International Journal of Robotics Research 9(2), 62–82 (1990)

    Article  Google Scholar 

  10. Collins, S.H., Wisse, M., Ruina, A.: A three-dimentional passive-dynamic walking robot with two legs and knees. International Journal of Robotics Research 20, 607–615 (2001)

    Article  Google Scholar 

  11. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive dynamic walkers. Science Magazine 307, 1082–1085 (2005)

    Google Scholar 

  12. Ziegler, M., Iida, F., Pfeifer, R.: “Cheap” underwater locomotion: Roles of morphological properties and behavioural diversity. In: Proceedings of Climbing and Walking Robots (2006)

    Google Scholar 

  13. McMahon, T.A., Cheng, G.C.: The mechanics of running: How does stiffness couple with speed? Journal of Biomechanics 23(suppl. 1), 65–78 (1990)

    Article  Google Scholar 

  14. Blickhan, R.: The spring-mass model for running and hopping. Journal of Biomechanics 22, 1217–1227 (1989)

    Article  Google Scholar 

  15. Seyfarth, A., Geyer, H., Guenther, M., Blickhan, R.: A movement criterion for running. Journal of Biomechanics 35, 649–655 (2002)

    Article  Google Scholar 

  16. Iida, F., Minekawa, Y., Rummel, J., Seyfarth, A.: Toward a human-like biped robot with compliant legs. In: Arai, T., et al. (eds.) Intelligent Autonomous Systems - 9, pp. 820–827. IOS Press, Amsterdam (2006)

    Google Scholar 

  17. Iida, F., Rummel, J., Seyfarth, A.: Bipedal walking and running with compliant legs. In: International Conference on Robotics and Automation (ICRA 2007), pp. 3970–3975 (2007)

    Google Scholar 

  18. Iida, F., Tedrake, R.: Motor control optimization of compliant one-legged locomotion in rough terrain. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007) (in press, 2007)

    Google Scholar 

  19. Rummel, J., Iida, F., Seyfarth, A.: One-legged locomotion with a compliant passive joint. In: Arai, T., et al. (eds.) Intelligent Autonomous Systems – 9, pp. 566–573. IOS Press, Amsterdam (2006)

    Google Scholar 

  20. Buehler, M., Battaglia, R., Cocosco, A., Hawker, G., Sarkis, J., Yamazaki, K.: Scout: A simple quadruped that walks, climbs and runs. In: Proc. Int. Conf on Robotics and Automation, pp. 1707–1712 (1998)

    Google Scholar 

  21. Kubow, T.M., Full, R.J.: The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Phil. Trans. R. Soc. Lond. B 354, 849–861 (1999)

    Article  Google Scholar 

  22. Raibert, H.M.: Legged Robots That Balance. MIT Press, Cambridge (1986)

    Google Scholar 

  23. Iida, F., Pfeifer, R.: “Cheap” rapid locomotion of a quadruped robot: Self-stabilization of bounding gait. In: Groen, F., et al. (eds.) Intelligent Autonomous Systems 8, vol. 35, IOS Press, Amsterdam (2004)

    Google Scholar 

  24. Iida, F., Gomez, G.J., Pfeifer, R.: Exploiting body dynamics for controlling a running quadruped robot. In: ICAR 2005, July 18th-20th, Seattle, U.S.A. pp. 229–235 (2005)

    Google Scholar 

  25. Cham, J.G., Bailey, S.A., Clark, J.E., Full, R.J., Cutkosky, M.R.: Fast and robust: hexapedal robots via shape deposition manufacturing. The International Journal of Robotics Research 21(10), 869–882 (2002)

    Article  Google Scholar 

  26. Raibert, M.H.: Trotting, pacing and bounding by a quadruped robot. Journal of Biomechanics 23(suppl. 1), 79–98 (1990)

    Article  Google Scholar 

  27. Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics 65, 147–159 (1991)

    Article  MATH  Google Scholar 

  28. Tedrake, R., Zhang, T.W., Seung, H.S.: Stochastic policy gradient reinforcement learning on a simple 3D biped. In: Proc. of the 10th Int. Conf. on Intelligent Robots and Systems pp. 2849–2854 (2004)

    Google Scholar 

  29. Geng, T., Porr, B., Wörgötter, F.: A reflexive neural network for dynamic biped walking control. Neural Computation 18(5), 1156–1196 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Buchli, J., Iida, F., Ijspeert, A.J.: Finding resonance: Adaptive frequency oscillators for dynamic legged locomotion. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006), pp. 3903–3909 (2006)

    Google Scholar 

  31. Iida, F., Pfeifer, R.: Sensing through body dynamics. Robotics and Autonomous Systems 54(8), 631–640 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max Lungarella Fumiya Iida Josh Bongard Rolf Pfeifer

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iida, F., Pfeifer, R., Seyfarth, A. (2007). AI in Locomotion: Challenges and Perspectives of Underactuated Robots. In: Lungarella, M., Iida, F., Bongard, J., Pfeifer, R. (eds) 50 Years of Artificial Intelligence. Lecture Notes in Computer Science(), vol 4850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77296-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77296-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77295-8

  • Online ISBN: 978-3-540-77296-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics