Skip to main content

(UREM) P Systems with a Quantum-Like Behavior: Background, Definition, and Computational Power

  • Conference paper
Membrane Computing (WMC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4860))

Included in the following conference series:

Abstract

Q-UREM P systems constitute an attempt to introduce and exploit in Membrane Computing notions and techniques deriving from quantum mechanics. As we will see, the approach we have adopted is different from what is usually done in Quantum Computing; in fact, we have been inspired by the functioning of creation and annihilation operators, that are sometimes used in quantum mechanics to exchange quanta of energy among physical systems. In this paper we will provide the background which has led to the current definition of Q-UREM P systems, and we will recall some results concerning their computational power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alford, G.: Membrane systems with heat control. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing. LNCS, vol. 2597, Springer, Heidelberg (2003)

    Google Scholar 

  2. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum control and logic gates. Physical Review Letters 74, 4083–4086 (1995)

    Article  Google Scholar 

  3. Benioff, P.: Quantum mechanical Hamiltonian models of computers. Annals of the New York Academy of Science 480, 475–486 (1986)

    Article  Google Scholar 

  4. Deutsch, D.: Quantum theory, the Church–Turing principle, and the universal quantum computer. Proceedings of the Royal Society of London A 400, 97–117 (1985)

    MathSciNet  Google Scholar 

  5. Feynman, R.P.: Simulating physics with computers. International Journal of Theoretical Physics 21(6-7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  6. Feynman, R.P.: Quantum mechanical computers. Optics News 11, 11–20 (1985)

    Article  Google Scholar 

  7. Freund, R.: Energy-controlled P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing. LNCS, vol. 2597, pp. 247–260. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Freund, R., Leporati, A., Oswald, M., Zandron, C.: Sequential P systems with unit rules and energy assigned to membranes. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 200–210. Springer, Heidelberg (2005)

    Google Scholar 

  9. Freund, R., Oswald, M.: GP systems with forbidding context. Fundamenta Informaticae 49(1-3), 81–102 (2002)

    MATH  MathSciNet  Google Scholar 

  10. Freund, R., Păun, G.: On the number of non-terminals in graph-controlled, programmed, and matrix grammars. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 214–225. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Freund, R., Păun, G.: From regulated rewriting to computing with membranes: Collapsing hierarchies. Theoretical Computer Science 312, 143–188 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Frisco, P.: The conformon–P system: a molecular and cell biology–inspired computability model. Theoretical Computer Science 312, 295–319 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory on NP–Completeness. W.H. Freeman and Company (1979)

    Google Scholar 

  14. Gottesman, D.: Fault-tolerant quantum computation with higher-dimensional systems. Chaos, Solitons, and Fractals 10, 1749–1758 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gruska, J.: Quantum Computing. McGraw-Hill, New York (1999)

    Google Scholar 

  16. Leporati, A., Felloni, S.: Three “quantum” algorithms to solve 3-SAT. Theoretical Computer Science 372, 218–241 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Leporati, A., Mauri, G., Zandron, C.: Quantum sequential P systems with unit rules and energy assigned to membranes. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 310–325. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Leporati, A., Pescini, D., Zandron, C.: Quantum energy–based P systems. In: Proceedings of the First Brainstorming Workshop on Uncertainty in Membrane Computing, Palma de Mallorca, Spain, November 8–10, 2004, pp. 145–167 (2004)

    Google Scholar 

  19. Leporati, A., Zandron, C., Mauri, G.: Simulating the Fredkin gate with energy–based P systems. Journal of Universal Computer Science 10(5), 600–619 (2004)

    MathSciNet  Google Scholar 

  20. Leporati, A., Zandron, C., Mauri, G.: Universal families of reversible P systems. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 257–268. Springer, Heidelberg (2005)

    Google Scholar 

  21. Leporati, A., Zandron, C., Mauri, G.: Reversible P systems to simulate Fredkin circuits. Fundamenta Informaticae 74, 529–548 (2006)

    MATH  MathSciNet  Google Scholar 

  22. Minsky, M.L.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New Jersey (1967)

    MATH  Google Scholar 

  23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  24. Păun, G.: Computing with membranes. Journal of Computer and System Sciences 1(61), 108–143 (2000), see also Turku Centre for Computer Science – TUCS Report No. 208 (1998)

    Google Scholar 

  25. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  26. Păun, G., Pérez-Jiménez, M.J.: Recent computing models inspired from biology: DNA and membrane computing. Theoria 18, 72–84 (2003)

    Google Scholar 

  27. Păun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer Science 287(1), 73–100 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Păun, G., Suzuki, Y., Tanaka, H.: P systems with energy accounting. International Journal Computer Math. 78(3), 343–364 (2001)

    Article  MATH  Google Scholar 

  29. The P systems Web page: http://psystems.disco.unimib.it/

Download references

Author information

Authors and Affiliations

Authors

Editor information

George Eleftherakis Petros Kefalas Gheorghe Păun Grzegorz Rozenberg Arto Salomaa

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leporati, A. (2007). (UREM) P Systems with a Quantum-Like Behavior: Background, Definition, and Computational Power. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2007. Lecture Notes in Computer Science, vol 4860. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77312-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77312-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77311-5

  • Online ISBN: 978-3-540-77312-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics