Skip to main content

Nanomechanical Properties of Solid Surfaces and Thin Films

  • Chapter
Nanotribology and Nanomechanics
  • 4182 Accesses

Abstract

Instrumentation for the testing of mechanical properties on the submicron scale has developed enormously in recent years. This has enabled the mechanical behavior of surfaces, thin films, and coatings to be studied with unprecedented accuracy. In this chapter, the various techniques available for studying nanomechanical properties are reviewed with particular emphasis on nanoindentation. The standard methods for analyzing the raw data obtained using these techniques are described, along with the main sources of error. These include residual stresses, environmental effects, elastic anisotropy, and substrate effects. The methods that have been developed for extracting thin-film mechanical properties from the often convoluted mix of film and substrate properties measured by nanoindentation are discussed. Interpreting the data is frequently difficult, as residual stresses can modify the contact geometry and, hence, invalidate the standard analysis routines. Work hardening in the deformed region can also result in variations in mechanical behavior with indentation depth. A further unavoidable complication stems from the ratio of film to substrate mechanical properties and the depth of indentation in comparison to film thickness. Even very shallow indentations may be influenced by substrate properties if the film is hard and very elastic but the substrate is compliant. Under these circumstances nonstandard methods of analysis must be used. For multilayered systems many different mechanisms affect the nanomechanical behavior, including Orowan strengthening, Hall–Petch behavior, image force effects, coherency and thermal stresses, and composition modulation. The application of nanoindentation to the study of phase transformations in semiconductors, fracture in brittle materials, and mechanical properties in biological materials are described. Recent developments such as the testing of viscoelasticity using nanoindentation methods are likely to be particularly important in future studies of polymers and biological materials. The importance of using a range of complementary methods such as electron microscopy, in situ AFM imaging, acoustic monitoring, and electrical contact measurements is emphasized. These are especially important on the nanoscale because so many different physical and chemical processes can affect the measured mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)

    Google Scholar 

  2. Microindentation Techniques in Materials Science and Engineering, ed. by P.J. Blau, B.R. Lawn (ASTM, Pennsylvannia 1986)

    Google Scholar 

  3. J.N. Israelachvili: Intermolecular and Surface Forces (Academic, London 1992)

    Google Scholar 

  4. R.S. Bradley: The cohesive force between solid surfaces and the surface energy of solids, Philos. Mag. 13, 853–862 (1932)

    CAS  Google Scholar 

  5. B.V. Derjaguin, V.M. Muller, Yu.P. Toporov: Effect of contact deformations on the adhesion of particles, J. Coll. Interface Sci. 53, 314–326 (1975)

    Google Scholar 

  6. V.M. Muller, V.S. Yuschenko, B.V. Derjaguin: On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane, J. Coll. Interface Sci. 77, 91–101 (1980)

    CAS  Google Scholar 

  7. V.M. Muller, B.V. Derjaguin, Yu.P. Toporov: On two methods of calculation of the force of sticking of an elastic sphere to a rigid plane, Coll. Surf. 7, 251–259 (1983)

    CAS  Google Scholar 

  8. K.L. Johnson, K. Kendal, A.D. Roberts: Surface energy and the contact of elastic solids, Proc. R. Soc. A 324, 301–320 (1971)

    CAS  Google Scholar 

  9. A.P. Ternovskii, V.P. Alekhin, M.Kh. Shorshorov, M.M. Khrushchov, V.N. Skvortsov: Zavod Lab. 39, 1242 (1973)

    CAS  Google Scholar 

  10. S.I. Bulychev, V.P. Alekhin, M.Kh. Shorshorov, A.P. Ternovskii, G.D. Shnyrev: Determining Young’s modulus from the indentor penetration diagram, Zavod Lab. 41, 1137 (1975)

    CAS  Google Scholar 

  11. S.I. Bulychev, V.P. Alekhin, M.Kh. Shorshorov, A.P. Ternovskii: Mechanical properties of materials studied from kinetic diagrams of load versus depth of impression during microimpression, Prob. Prochn. 9, 79 (1976)

    Google Scholar 

  12. S.I. Bulychev, V.P. Alekhin: Zavod Lab. 53, 76 (1987)

    Google Scholar 

  13. M.Kh. Shorshorov, S.I. Bulychev, V.P. Alekhin: Sov. Phys. Doklady 26, 769 (1982)

    Google Scholar 

  14. J.B. Pethica: Microhardness tests with penetration depths less than ion implanted layer thickness. In: Ion Implantation into Metals, ed. by V. Ashworth, W. Grant, R. Procter (Pergamon, Oxford 1982) p.147

    Google Scholar 

  15. D. Newey, M.A. Wilkens, H.M. Pollock: An ultra-low-load penetration hardness tester, J. Phys. E: Sci. Instrum. 15, 119 (1982)

    CAS  Google Scholar 

  16. D. Kendall, D. Tabor: An ultrasonic study of the area of contact between stationary and sliding surfaces, Proc. R. Soc. A 323, 321–340 (1971)

    Google Scholar 

  17. G.M. Pharr, W.C. Oliver, F.R. Brotzen: On the generality of the relationship among contact stiffness, contact area and elastic-modulus during indentation, J. Mater. Res. 7, 613 (1992)

    CAS  Google Scholar 

  18. T.P. Weihs, C.W. Lawrence, B. Derby, C.B. Scruby, J.B. Pethica: Acoustic emissions during indentation tests, MRS Symp. Proc. 239, 361–366 (1992)

    CAS  Google Scholar 

  19. D.F. Bahr, J.W. Hoehn, N.R. Moody, W.W. Gerberich: Adhesion and acoustic emission analysis of failures in nitride films with 14 metal interlayer, Acta Mater. 45, 5163 (1997)

    CAS  Google Scholar 

  20. D.F. Bahr, W.W. Gerberich: Relationships between acoustic emission signals and physical phemomena during indentation, J. Mat. Res. 13, 1065 (1998)

    CAS  Google Scholar 

  21. A.B. Mann, D. van Heerden, J.B. Pethica, T.P. Weihs: Size-dependent phase transformations during point-loading of silicon, J. Mater. Res. 15, 1754 (2000)

    CAS  Google Scholar 

  22. A.B. Mann, D. van Heerden, J.B. Pethica, P. Bowes, T.P. Weihs: Contact resistance and phase transformations during nanoindentation of silicon, Philos. Mag. A 82, 1921 (2002)

    CAS  Google Scholar 

  23. S. Jeffery, C.J. Sofield, J.B. Pethica: The influence of mechanical stress on the dielectric breakdown field strength of SiO2 films, Appl. Phys. Lett. 73, 172 (1998)

    CAS  Google Scholar 

  24. B.N. Lucas, W.C. Oliver: Indentation power-law creep of high-purity indium, Metall. Trans. A 30, 601 (1999)

    Google Scholar 

  25. S.A. Syed Asif: Time dependent micro deformation of materials. Ph.D. Thesis (Oxford Univ., Oxford 1997)

    Google Scholar 

  26. S.A. Syed Asif, R.J. Colton, K.J. Wahl: Nanoscale Surface Mechanical Property Measurements: Force Modulation Techniques Applied to Nanoindentation. In: Interfacial Properties on the Submicron Scale, ed. by J. Frommer, R. Overney (ACS Books, Whashington 2000)

    Google Scholar 

  27. A.B. Mann, J.B. Pethica: Nanoindentation studies in a liquid environment, Langmuir 12, 4583 (1996)

    CAS  Google Scholar 

  28. J.W. Beams: Mechanical properties of thin films of gold and silver. In: Structure and Properties of Thin Films, ed. by C.A. Neugebauer, J.B. Newkirk, D.A. Vermilyea (Wiley, New York 1959) pp.183–192

    Google Scholar 

  29. J.J. Vlassak, W.D. Nix: A new bulge test technique for the determination of Youngs modulus and Poissons ratio of thin-films, J. Mater. Res. 7, 3242 (1992)

    CAS  Google Scholar 

  30. W.M.C. Yang, T. Tsakalakos, J.E. Hilliard: Enhanced elastic modulus in composition modulated gold-nickel and copper-palladium foils, J. Appl. Phys. 48, 876 (1977)

    CAS  Google Scholar 

  31. R.C. Cammarata: Mechanical properties of nanocomposite thin-films, Thin Solid Films 240, 82 (1994)

    CAS  Google Scholar 

  32. G.A.D. Briggs: Acoustic Microscopy (Clarendon, Oxford 1992)

    Google Scholar 

  33. J. Kushibiki, N. Chubachi: Material characterization by line-focus-beam acoustic microscope, IEEE Trans. Sonics Ultrasonics 32, 189–212 (1985)

    Google Scholar 

  34. M.J. Bamber, K.E. Cooke, A.B. Mann, B. Derby: Accurate determination of Young’s modulus and Poisson’s ratio of thin films by a combination of acoustic microscopy and nanoindentation, Thin Solid Films 398, 299–305 (2001)

    Google Scholar 

  35. S.E. Bobbin, R.C. Cammarata, J.W. Wagner: Determination of the flexural modulus of thin-films from measurement of the 1st arrival of the symmetrical Lamb wave, Appl. Phys. Lett. 59, 1544–1546 (1991)

    CAS  Google Scholar 

  36. R.B. King, C.M. Fortunko: Determination of inplane residual-stress state in plates using horizontally polarized shear waves, J. Appl. Phys. 54, 3027–3035 (1983)

    Google Scholar 

  37. R.F. Cook, G.M. Pharr: Direct observation and analysis of indentation cracking in glasses and ceramics, J. Am. Ceram. Soc. 73, 787–817 (1990)

    CAS  Google Scholar 

  38. T.F. Page, W.C. Oliver, C.J. McHargue: The deformation-behavior of ceramic crystals subjected to very low load (nano)indentations, J. Mater. Res. 7, 450–473 (1992)

    CAS  Google Scholar 

  39. G.M. Pharr, W.C. Oliver, D.S. Harding: New evidence for a pressure-induced phase-transformation during the indentation of silicon, J. Mater. Res. 6, 1129–1130 (1991)

    CAS  Google Scholar 

  40. C.F. Robertson, M.C. Fivel: The study of submicron indent-induced plastic deformation, J. Mater. Res. 14, 2251–2258 (1999)

    CAS  Google Scholar 

  41. J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, P. Munroe: Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon, Appl. Phys. Lett. 77, 3749–3751 (2000)

    CAS  Google Scholar 

  42. Y.G. Gogotsi, V. Domnich, S.N. Dub, A. Kailer, K.G. Nickel: Cyclic nanoindentation and Raman microspectroscopy study of phase transformations in semiconductors, J. Mater. Res. 15, 871–879 (2000)

    CAS  Google Scholar 

  43. H. Hertz: Über die Berührung fester elastischer Körper, J. reine angew. Math. 92, 156–171 (1882)

    Google Scholar 

  44. J. Boussinesq: Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques (Blanchard, Paris 1885) Reprint (1996)

    Google Scholar 

  45. A.E.H. Love: The stress produced in a semi-infinite solid by pressure on part of the boundary, Philos. Trans. R. Soc. 228, 377–420 (1929)

    Google Scholar 

  46. A.E.H. Love: Boussinesq’s problem for a rigid cone, Quarter. J. Math. 10, 161 (1939)

    Google Scholar 

  47. I.N. Sneddon: The relationship between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3, 47–57 (1965)

    Google Scholar 

  48. D. Tabor: Hardness of Metals (Oxford Univ. Press, Oxford 1951)

    Google Scholar 

  49. R. von Mises: Mechanik der festen Körper in plastisch deformablen Zustand, Goettinger Nachr. Math.-Phys. K1, 582–592 (1913)

    Google Scholar 

  50. H. Tresca: Sur l’ecoulement des corps solids soumis s fortes pression, Compt. Rend. 59, 754 (1864)

    Google Scholar 

  51. A.B. Mann, J.B. Pethica: The role of atomic-size asperities in the mechanical deformation of nanocontacts, Appl. Phys. Lett. 69, 907–909 (1996)

    CAS  Google Scholar 

  52. A.B. Mann, J.B. Pethica: The effect of tip momentum on the contact stiffness and yielding during nanoindentation testing, Philos. Mag. A 79, 577–592 (1999)

    CAS  Google Scholar 

  53. S.P. Jarvis: Atomic force microscopy and tip-surface interactions. Ph.D. Thesis (Oxford Univ., Oxford 1993)

    Google Scholar 

  54. J.B. Pethica, D. Tabor: Contact of characterised metal surfaces at very low loads: Deformation and adhesion, Surf. Sci. 89, 182 (1979)

    CAS  Google Scholar 

  55. J.S. Field, M.V. Swain: Determining the mechanical-properties of small volumes of materials from submicrometer spherical indentations, J. Mater. Res. 10, 101–112 (1995)

    CAS  Google Scholar 

  56. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564–1583 (1992)

    CAS  Google Scholar 

  57. S.V. Hainsworth, H.W. Chandler, T.F. Page: Analysis of nanoindentation load-displacement loading curves, J. Mater. Res. 11, 1987–1995 (1996)

    CAS  Google Scholar 

  58. J.L. Loubet, J.M. Georges, O. Marchesini, G. Meille: Vickers indentation curves of magnesium oxide (MgO), Mech. Eng. 105, 91–92 (1983)

    Google Scholar 

  59. J.L. Loubet, J.M. Georges, O. Marchesini, G. Meille: Vickers indentation curves of magnesium oxide (MgO), J. Tribol. Trans. ASME 106, 43–48 (1984)

    CAS  Google Scholar 

  60. M.F. Doerner, W.D. Nix: A method for interpreting the data from depth sensing indentation experiments, J. Mater. Res. 1, 601–609 (1986)

    Google Scholar 

  61. A. Bolshakov, W.C. Oliver, G.M. Pharr: Influences of stress on the measurement of mechanical properties using nanoindentation. 2. Finite element simulations, J. Mater. Res. 11, 760–768 (1996)

    CAS  Google Scholar 

  62. A. Bolshakov, G.M. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth sensing instruments, J. Mater. Res. 13, 1049–1058 (1998)

    CAS  Google Scholar 

  63. J.C. Hay, A. Bolshakov, G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data, J. Mater. Res. 14, 2296–2305 (1999)

    CAS  Google Scholar 

  64. G.M. Pharr, T.Y. Tsui, A. Bolshakov, W.C. Oliver: Effects of residual-stress on the measurement of hardness and elastic-modulus using nanoindentation, MRS Symp. Proc. 338, 127–134 (1994)

    CAS  Google Scholar 

  65. T.R. Simes, S.G. Mellor, D.A. Hills: A note on the influence of residual-stress on measured hardness, J. Strain Anal. Eng. Des. 19, 135–137 (1984)

    Google Scholar 

  66. W.R. Lafontaine, B. Yost, C.Y. Li: Effect of residual-stress and adhesion on the hardness of copper-films deposited on silicon, J. Mater. Res. 5, 776–783 (1990)

    CAS  Google Scholar 

  67. W.R. Lafontaine, C.A. Paszkiet, M.A. Korhonen, C.Y. Li: Residual stress measurements of thin aluminum metallizations by continuous indentation and X-ray stress measurement techniques, J. Mater. Res. 6, 2084–2090 (1991)

    CAS  Google Scholar 

  68. T.Y. Tsui, W.C. Oliver, G.M. Pharr: Influences of stress on the measurement of mechanical properties using nanoindentation. 1. Experimental studies in an aluminum alloy, J. Mater. Res. 11, 752–759 (1996)

    CAS  Google Scholar 

  69. T.Y. Tsui, J. Vlassak, W.D. Nix: Indentation plastic displacement field: Part I. The case of soft films on hard substrates, J. Mater. Res. 14, 2196–2203 (1999)

    CAS  Google Scholar 

  70. T.Y. Tsui, J. Vlassak, W.D. Nix: Indentation plastic displacement field: Part II. The case of hard films on soft substrates, J. Mater. Res. 14, 2204–2209 (1999)

    CAS  Google Scholar 

  71. D.L. Joslin, W.C. Oliver: A new method for analyzing data from continuous depth-sensing microindentation tests, J. Mater. Res. 5, 123–126 (1990)

    CAS  Google Scholar 

  72. M.R. McGurk, T.F. Page: Using the P-delta(2) analysis to deconvolute the nanoindentation response of hard-coated systems, J. Mater. Res. 14, 2283–2295 (1999)

    CAS  Google Scholar 

  73. Y.T. Cheng, C.M. Cheng: Relationships between hardness, elastic modulus, and the work of indentation, Appl. Phys. Lett. 73, 614–616 (1998)

    CAS  Google Scholar 

  74. J.B. Pethica, W.C. Oliver: Mechanical properties of nanometer volumes of material: Use of the elastic response of small area indentations, MRS Symp. Proc. 130, 13–23 (1989)

    CAS  Google Scholar 

  75. W.C. Oliver, J.B. Pethica: Method for continuous determination of the elastic stiffness of contact between two bodies, United States Patent Number 4,848,141, (1989)

    Google Scholar 

  76. S.A.S. Asif, K.J. Wahl, R.J. Colton: Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer, Rev. Sci. Instrum. 70, 2408–2413 (1999)

    CAS  Google Scholar 

  77. J.L. Loubet, W.C. Oliver, B.N. Lucas: Measurement of the loss tangent of low-density polyethylene with a nanoindentation technique, J. Mater. Res. 15, 1195–1198 (2000)

    CAS  Google Scholar 

  78. W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, J.T. Wyrobek: Indentation induced dislocation nucleation: The initial yield point, Acta Mater. 44, 3585–3598 (1996)

    CAS  Google Scholar 

  79. J.D. Kiely, J.E. Houston: Nanomechanical properties of Au(111), (001), and (110) surfaces, Phys. Rev. B 57, 12588–12594 (1998)

    CAS  Google Scholar 

  80. D.F. Bahr, D.E. Wilson, D.A. Crowson: Energy considerations regarding yield points during indentation, J. Mater. Res. 14, 2269–2275 (1999)

    CAS  Google Scholar 

  81. D.E. Kramer, K.B. Yoder, W.W. Gerberich: Surface constrained plasticity: Oxide rupture and the yield point process, Philos. Mag. A 81, 2033–2058 (2001)

    CAS  Google Scholar 

  82. S.G. Corcoran, R.J. Colton, E.T. Lilleodden, W.W. Gerberich: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals, Phys. Rev. B 55, 16057–16060 (1997)

    Google Scholar 

  83. E.B. Tadmor, R. Miller, R. Phillips, M. Ortiz: Nanoindentation and incipient plasticity, J. Mater. Res. 14, 2233–2250 (1999)

    CAS  Google Scholar 

  84. J.A. Zimmerman, C.L. Kelchner, P.A. Klein, J.C. Hamilton, S.M. Foiles: Surface step effects on nanoindentation, Phys. Rev. Lett. 87, article 165507 (1–4) (2001)

    Google Scholar 

  85. J.D. Kiely, R.Q. Hwang, J.E. Houston: Effect of surface steps on the plastic threshold in nanoindentation, Phys. Rev. Lett. 81, 4424–4427 (1998)

    CAS  Google Scholar 

  86. A.B. Mann, P.C. Searson, J.B. Pethica, T.P. Weihs: The relationship between near-surface mechanical properties, loading rate and surface chemistry, Mater. Res. Soc. Symp. Proc. 505, 307–318 (1998)

    CAS  Google Scholar 

  87. R.C. Thomas, J.E. Houston, T.A. Michalske, R.M. Crooks: The mechanical response of gold substrates passivated by self-assembling monolayer films, Science 259, 1883–1885 (1993)

    CAS  Google Scholar 

  88. W.D. Nix: Elastic and plastic properties of thin films on substrates: Nanoindentation techniques, Mater. Sci. Eng. A 234, 37–44 (1997)

    Google Scholar 

  89. J.J. Vlassak, W.D. Nix: Indentation modulus of elastically anisotropic half-spaces, Philos. Mag. A 67, 1045–1056 (1993)

    Google Scholar 

  90. J.J. Vlassak, W.D. Nix: Measuring the elastic properties of anisotropic materials by means of indentation experiments, J. Mech. Phys. Solids 42, 1223–1245 (1994)

    Google Scholar 

  91. B.R. Lawn: Fracture of Brittle Solids (Cambridge Univ. Press, Cambridge 1993)

    Google Scholar 

  92. G.M. Pharr: Measurement of mechanical properties by ultra-low load indentation, Mater. Sci. Eng. A 253, 151–159 (1998)

    Google Scholar 

  93. D.B. Marshall, A.G. Evans: Measurement of adherence of residually stressed thin-films by indentation. 1. Mechanics of interface delamination, J. Appl. Phys. 56, 2632–2638 (1984)

    CAS  Google Scholar 

  94. C. Rossington, A.G. Evans, D.B. Marshall, B.T. Khuriyakub: Measurement of adherence of residually stressed thin-films by indentation. 2. Experiments with ZnO/Si, J. Appl. Phys. 56, 2639–2644 (1984)

    CAS  Google Scholar 

  95. M.D. Kriese, W.W. Gerberich, N.R. Moody: Quantitative adhesion measures of multilayer films: Part I. Indentation mechanics, J. Mater. Res. 14, 3007–3018 (1999)

    CAS  Google Scholar 

  96. M.D. Kriese, W.W. Gerberich, N.R. Moody: Quantitative adhesion measures of multilayer films: Part II. Indentation of W/Cu, W/W, Cr/W, J. Mater. Res. 14, 3019–3026 (1999)

    CAS  Google Scholar 

  97. M. Li, C.B. Carter, M.A. Hillmyer, W.W. Gerberich: Adhesion of polymer-inorganic interfaces by nanoindentation, J. Mater. Res. 16, 3378–3388 (2001)

    CAS  Google Scholar 

  98. D.R. Clarke, M.C. Kroll, P.D. Kirchner, R.F. Cook, B.J. Hockey: Amorphization and conductivity of silicon and germanium induced by indentation, Phys. Rev. Lett. 60, 2156–2159 (1988)

    CAS  Google Scholar 

  99. J.J. Gilman: Insulator-metal transitions at microindentation, J. Mater. Res. 7, 535–538 (1992)

    CAS  Google Scholar 

  100. G.M. Pharr, W.C. Oliver, R.F. Cook, P.D. Kirchner, M.C. Kroll, T.R. Dinger, D.R. Clarke: Electrical-resistance of metallic contacts on silicon and germanium during indentation, J. Mater. Res. 7, 961–972 (1992)

    CAS  Google Scholar 

  101. A. Kailer, Y.G. Gogotsi, K.G. Nickel: Phase transformations of silicon caused by contact loading, J. Appl. Phys. 81, 3057–3063 (1997)

    CAS  Google Scholar 

  102. J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, P. Munroe: Mechanical deformation in silicon by micro-indentation, J. Mater. Res. 16, 1500–1507 (2000)

    Google Scholar 

  103. G.S. Was, T. Foecke: Deformation and fracture in microlaminates, Thin Solid Films 286, 1–31 (1996)

    CAS  Google Scholar 

  104. A.J. Whitehead, T.F. Page: Nanoindentation studies of thin-film coated systems, Thin Solid Films 220, 277–283 (1992)

    CAS  Google Scholar 

  105. A.J. Whitehead, T.F. Page: Nanoindentation studies of thin-coated systems, NATO ASI Ser. E 233, 481–488 (1993)

    CAS  Google Scholar 

  106. B.D. Fabes, W.C. Oliver, R.A. McKee, F.J. Walker: The determination of film hardness from the composite response of film and substrate to nanometer scale indentations, J. Mater. Res. 7, 3056–3064 (1992)

    CAS  Google Scholar 

  107. T.F. Page, S.V. Hainsworth: Using nanoindentation techniques for the characterization of coated systems – a critique, Surface Coat. Technol. 61, 201–208 (1993)

    CAS  Google Scholar 

  108. X. Chen, J.J. Vlassak: Numerical study on the measurement of thin film mechanical properties by means of nanoindentation, J. Mater. Res. 16, 2974–2982 (2001)

    CAS  Google Scholar 

  109. P.J. Burnett, T.F. Page: Surface softening in silicon by ion-implantation, J. Mater. Sci. 19, 845–860 (1984)

    CAS  Google Scholar 

  110. P.J. Burnett, D.S. Rickerby: The mechanical-properties of wear resistant coatings. 1. Modeling of hardness behavior, Thin Solid Films 148, 41–50 (1987)

    CAS  Google Scholar 

  111. P.J. Burnett, D.S. Rickerby: The mechanical-properties of wear resistant coatings. 2. Experimental studies and interpretation of hardness, Thin Solid Films 148, 51–65 (1987)

    CAS  Google Scholar 

  112. P.M. Sargent: A better way to present results from a least-squares fit to experimental-data – an example from microhardness testing, J. Test. Eval. 14, 122–127 (1986)

    Google Scholar 

  113. S.J. Bull, D.S. Rickerby: Evaluation of coatings, Brit. Ceram. Trans. J. 88, 177–183 (1989)

    CAS  Google Scholar 

  114. B.R. Lawn, A.G. Evans, D.B. Marshall: Elastic/plastic indentation damage in ceramics: The median/radial crack system, J. Am. Ceram. Soc. 63, 574–581 (1980)

    CAS  Google Scholar 

  115. R. Hill: The Mathematical Theory of Plasticity (Clarendon, Oxford 1950)

    Google Scholar 

  116. W.C. Oliver, C.J. McHargue, S.J. Zinkle: Thin-film characterization using a mechanical-properties microprobe, Thin Solid Films 153, 185–196 (1987)

    CAS  Google Scholar 

  117. N.G. Chechechin, J. Bottiger, J.P. Krog: Nanoindentation of amorphous aluminum oxide films. 1. Influence of the substrate on the plastic properties, Thin Solid Films 261, 219–227 (1995)

    Google Scholar 

  118. N.G. Chechechin, J. Bottiger, J.P. Krog: Nanoindentation of amorphous aluminum oxide films. 2. Critical parameters for the breakthrough and a membrane effect in thin hard films on soft substrates, Thin Solid Films 261, 228–235 (1995)

    Google Scholar 

  119. D.E. Kramer, A.A. Volinsky, N.R. Moody, W.W. Gerberich: Substrate effects on indentation plastic zone development in thin soft films, J. Mater. Res. 16, 3150–3157 (2001)

    CAS  Google Scholar 

  120. A.B. Mann: Nanomechanical measurements: Surface and environmental effects. Ph.D. Thesis (Oxford Univ., Oxford 1995)

    Google Scholar 

  121. A.B. Mann, J.B. Pethica, W.D. Nix, S. Tomiya: Nanoindentation of epitaxial films: A study of pop-in events, Mater. Res. Soc. Symp. Proc. 356, 271–276 (1995)

    CAS  Google Scholar 

  122. R. Saha, W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Mater. 50, 23–38 (2002)

    CAS  Google Scholar 

  123. S.A. Barnett: Deposition and mechanical properties of superlattice thin films. In: Physics of Thin Films, ed. by M.H. Francombe, J.L. Vossen (Academic, New York 1993)

    Google Scholar 

  124. R.R. Oberle, R.C. Cammarata: Dependence of hardness on modulation amplitude in electrodeposited Cu-Ni compositionally modulated thin-films, Scripta Metall. 32, 583–588 (1995)

    CAS  Google Scholar 

  125. A. Madan, Y.Y. Wang, S.A. Barnett, C. Engstrom, H. Ljungcrantz, L. Hultman, M. Grimsditch: Enhanced mechanical hardness in epitaxial nonisostructural Mo/NbN and W/NbN superlattices, J. Appl. Phys. 84, 776–785 (1998)

    CAS  Google Scholar 

  126. R. Venkatraman, J.C. Bravman: Separation of film thickness and grain-boundary strengthening effects in Al thin-films on Si, J. Mater. Res. 7, 2040–2048 (1992)

    CAS  Google Scholar 

  127. J.D. Embury, J.P. Hirth: On dislocation storage and the mechanical response of fine-scale microstructures, Acta Mater. 42, 2051–2056 (1994)

    Google Scholar 

  128. D.J. Srolovitz, S.M. Yalisove, J.C. Bilello: Design of multiscalar metallic multilayer composites for high-strength, high toughness, and low CTE mismatch, Metall. Trans. A 26, 1805–1813 (1995)

    Google Scholar 

  129. J.S. Koehler: Attempt to design a strong solid, Phys. Rev. B 2, 547–551 (1970)

    Google Scholar 

  130. S.V. Kamat, J.P. Hirth, B. Carnahan: Image forces on screw dislocations in multilayer structures, Scripta Metall. 21, 1587–1592 (1987)

    Google Scholar 

  131. M. Shinn, L. Hultman, S.A. Barnett: Growth, structure, and microhardness of epitaxial TiN/NbN superlattices, J. Mater. Res. 7, 901–911 (1992)

    CAS  Google Scholar 

  132. J.E. Krzanowski: The effect of composition profile on the strength of metallic multilayer structures, Scripta Metall. 25, 1465–1470 (1991)

    Google Scholar 

  133. J.B. Vella, R.C. Cammarata, T.P. Weihs, C.L. Chien, A.B. Mann, H. Kung: Nanoindentation study of amorphous metal multilayered thin films, MRS Symp. Proc. 594, 25–29 (2000)

    CAS  Google Scholar 

  134. J.L. Cuy, A.B. Mann, K.J. Livi, M.F. Teaford, T.P. Weihs: Nanoindentation mapping of the mechanical properties of human molar tooth enamel, Arch. Oral Biol. 47, 281–291 (2002)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mann, A. (2008). Nanomechanical Properties of Solid Surfaces and Thin Films. In: Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77608-6_12

Download citation

Publish with us

Policies and ethics