Skip to main content

Nanotribology, Nanomechanics and Materials Characterization

  • Chapter
Nanotribology and Nanomechanics

Abstract

Nanotribology and nanomechanics studies are needed to develop fundamental understanding of interfacial phenomena on a small scale and to study interfacial phenomena in micro/nanoelectromechanical systems (MEMS/NEMS), magnetic storage devices, and other applications. Friction and wear of lightly loaded micro/nanocomponents are highly dependent on the surface interactions (few atomic layers). These structures are generally coated with molecularly thin films. Nanotribology and nanomechanics studies are also valuable in fundamental understanding of interfacial phenomena in macrostructures, and provide a bridge between science and engineering. An atomic force microscope (AFM) tip is used to simulate a single asperity contact with a solid or lubricated surface. AFMs are used to study the various tribological phenomena, which include surface roughness, adhesion, friction, scratching, wear, detection of material transfer, and boundary lubrication. In situ surface characterization of local deformation of materials and thin coatings can be carried out using a tensile stage inside an AFM. Mechanical properties such as hardness, Young's modulus of elasticity and creep/relaxation behavior can be determined on the micro- to picoscales using a depth-sensing indentation system in an AFM. Localized surface elasticity and viscoelastic mapping can be obtained of near-surface regions with nanoscale lateral resolution. Finally, an AFM can be used for nanofabrication/nanomachining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.L. Singer, H.M. Pollock: Fundamentals of Friction: Macroscopic and Microscopic Processes (Kluwer Academic, Dordrecht 1992) p.220

    Google Scholar 

  2. B.N.J. Persson, E. Tosatti: Physics of Sliding Friction (Kluwer Academic, Dordrecht 1996) p.E311

    Google Scholar 

  3. B. Bhushan: Micro/Nanotribology and its Applications, Vol.E (Kluwer Academic, Dordrecht 1997) p.330

    Google Scholar 

  4. B. Bhushan: Handbook of Micro/Nanotribology, Vol.2nd (CRC, Boca Raton 1999)

    Google Scholar 

  5. B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  6. B. Bhushan: Nanoscale tribophysics and tribomechanics, Wear 225-229, 465–492 (1999)

    Article  CAS  Google Scholar 

  7. B. Bhushan: Modern Tribology Handbook, Vol. 1: Principles of Tribology (CRC, Boca Raton 2001)

    Google Scholar 

  8. B. Bhushan: Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales, NATO Science Series II, Vol.10 (Kluwer Academic, Dordrecht 2001)

    Google Scholar 

  9. B. Bhushan: Nano- to microscale wear and mechanical characterization studies using scanning probe microscopy, Wear 251, 1105–1123 (2001)

    Article  Google Scholar 

  10. B. Bhushan: Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  11. B. Bhushan: Nanotribology and Nanomechanics – An Introduction (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

  12. B. Bhushan: Nanotribology and nanomechanics, Wear 259, 1507–1531 (2005)

    Article  CAS  Google Scholar 

  13. B. Bhushan, J.N. Israelachvili, U. Landman: Nanotribology: Friction, wear and lubrication at the atomic scale, Nature 374, 607–616 (1995)

    Article  CAS  Google Scholar 

  14. H.J. Guntherodt, D. Anselmetti: Forces in Scanning Probe Methods (Kluwer Academic, Dordrecht 1995) p.E286

    Google Scholar 

  15. B. Bhushan: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, New York 1996)

    Google Scholar 

  16. B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer Academic, Dordrecht 1998)

    Google Scholar 

  17. B. Bhushan: Wear and mechanical characterisation on micro- to picoscales using AFM, Int. Mater. Rev. 44, 105–117 (1999)

    Article  CAS  Google Scholar 

  18. B. Bhushan, H. Fuchs, S. Hosaka: Applied Scanning Probe Methods (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  19. B. Bhushan, H. Fuchs: Applied Scanning Probe Methods II (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  20. G. Binnig, C.F. Quate, Ch. Gerber: Atomic force microscopy, Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  21. G. Binnig, Ch. Gerber, E. Stoll, T.R. Albrecht, C.F. Quate: Atomic resolution with atomic force microscope, Europhys. Lett. 3, 1281–1286 (1987)

    Article  CAS  Google Scholar 

  22. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59, 1942–1945 (1987)

    Article  CAS  Google Scholar 

  23. B. Bhushan, J. Ruan: Atomic-scale friction measurements using friction force microscopy: Part II—application to magnetic media, ASME J. Trib. 116, 389–396 (1994)

    CAS  Google Scholar 

  24. J. Ruan, B. Bhushan: Atomic-scale friction measurements using friction force microscopy: Part I—general principles and new measurement techniques, ASME J. Tribol. 116, 378–388 (1994)

    Article  CAS  Google Scholar 

  25. J. Ruan, B. Bhushan: Atomic-scale and microscale friction of graphite and diamond using friction force microscopy, J. Appl. Phys. 76, 5022–5035 (1994)

    Article  CAS  Google Scholar 

  26. J. Ruan, B. Bhushan: Frictional behavior of highly oriented pyrolytic graphite, J. Appl. Phys. 76, 8117–8120 (1994)

    Article  CAS  Google Scholar 

  27. B. Bhushan, V.N. Koinkar, J. Ruan: Microtribology of magnetic media, Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 208, 17–29 (1994)

    Article  Google Scholar 

  28. B. Bhushan, A.V. Kulkarni: Effect of normal load on microscale friction measurements, Thin Solid Films 278, 49–56 (1996)

    Article  CAS  Google Scholar 

  29. B. Bhushan, A.V. Kulkarni: Effect of normal load on microscale friction measurements, Thin Solid Films 293, 333 (1996)

    Article  Google Scholar 

  30. B. Bhushan, S. Sundararajan: Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy, Acta Mater. 46, 3793–3804 (1998)

    Article  CAS  Google Scholar 

  31. V. Scherer, W. Arnold, B. Bhushan: Active Friction Control Using Ultrasonic Vibration. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp.463–469

    Google Scholar 

  32. V. Scherer, W. Arnold, B. Bhushan: Lateral force microscopy using acoustic friction force microscopy, Surf. Interface Anal. 27, 578–587 (1999)

    Article  CAS  Google Scholar 

  33. M. Reinstaedtler, U. Rabe, V. Scherer, U. Hartmann, A. Goldade, B. Bhushan, W. Arnold: On the nanoscale measurement of friction using atomic-force microscope cantilever torsional resonances, Appl. Phys. Lett. 82, 2604–2606 (2003)

    Article  CAS  Google Scholar 

  34. M. Reinstaedtler, U. Rabe, A. Goldade, B. Bhushan, W. Arnold: Investigating ultra-thin lubricant layers using resonant friction force microscopy, Tribol. Int. 38, 533–541 (2005)

    Article  Google Scholar 

  35. M. Reinstaedtler, T. Kasai, U. Rabe, B. Bhushan, W. Arnold: Imaging and measurement of elasticity and friction using the TR mode, J. Phys. D: Appl. Phys. 38, R269–R282 (2005)

    Article  CAS  Google Scholar 

  36. B. Bhushan, T. Kasai: A surface topography-independent friction measurement technique using torsional resonance mode in an AFM, Nanotechnology 15, 923–935 (2004)

    Article  Google Scholar 

  37. N.S. Tambe, B. Bhushan: A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities, J. Phys. D: Appl. Phys. 38, 764–773 (2005)

    Article  CAS  Google Scholar 

  38. B. Bhushan, A.V. Kulkarni, V.N. Koinkar, M. Boehm, L. Odoni, C. Martelet, M. Belin: Microtribological characterization of self-assembled and Langmuir–Blodgett monolayers by atomic and friction force microscopy, Langmuir 11, 3189–3198 (1995)

    Article  CAS  Google Scholar 

  39. V.N. Koinkar, B. Bhushan: Micro/nanoscale studies of boundary layers of liquid lubricants for magnetic disks, J. Appl. Phys. 79, 8071–8075 (1996)

    Article  CAS  Google Scholar 

  40. V.N. Koinkar, B. Bhushan: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy, J. Vac. Sci. Technol. 14, 2378–2391 (1996)

    CAS  Google Scholar 

  41. B. Bhushan, H. Liu: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM, Phys. Rev. B 63, 245412–1–245412–11 (2001)

    Article  CAS  Google Scholar 

  42. H. Liu, B. Bhushan: Nanotribological characterization of molecularly-thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97, 321–340 (2003)

    Article  CAS  Google Scholar 

  43. B. Bhushan, T. Kasai, G. Kulik, L. Barbieri, P. Hoffmann: AFM study of perfluorosilane and alkylsilane self-assembled monolayers for anti-stiction in MEMS/NEMS, Ultramicroscopy 105, 176–188 (2005)

    Article  CAS  Google Scholar 

  44. B. Bhushan, V.N. Koinkar: Tribological studies of silicon for magnetic recording applications, J. Appl. Phys. 75, 5741–5746 (1994)

    Article  CAS  Google Scholar 

  45. V.N. Koinkar, B. Bhushan: Microtribological studies of Al2O3-TiC, polycrystalline and single-crystal Mn-Zn ferrite and SiC head slider materials, Wear 202, 110–122 (1996)

    Article  CAS  Google Scholar 

  46. V.N. Koinkar, B. Bhushan: Microtribological properties of hard amorphous carbon protective coatings for thin film magnetic disks and heads, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 211, 365–372 (1997)

    Article  Google Scholar 

  47. S. Sundararajan, B. Bhushan: Development of a continuous microscratch technique in an atomic force microscope and its application to study scratch resistance of ultra-thin hard amorphous carbon coatings, J. Mater. Res. 16, 75–84 (2001)

    Article  Google Scholar 

  48. J. Ruan, B. Bhushan: Nanoindentation studies of fullerene films using atomic force microscopy, J. Mater. Res. 8, 3019–3022 (1993)

    Article  CAS  Google Scholar 

  49. B. Bhushan, A.V. Kulkarni, W. Bonin, J.T. Wyrobek: Nano/picoindentation measurement using a capacitance transducer system in atomic force microscopy, Philos. Mag. 74, 1117–1128 (1996)

    Article  CAS  Google Scholar 

  50. B. Bhushan, V.N. Koinkar: Nanoindentation hardness measurements using atomic force microscopy, Appl. Phys. Lett. 64, 1653–1655 (1994)

    Article  CAS  Google Scholar 

  51. B. Bhushan, X. Li: Nanomechanical characterisation of solid surfaces and thin films (invited), Intern. Mater. Rev. 48, 125–164 (2003)

    Article  CAS  Google Scholar 

  52. P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma: Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology 2, 103–106 (1991)

    Article  Google Scholar 

  53. B. Anczykowski, D. Kruger, K.L. Babcock, H. Fuchs: Basic properties of dynamic force microscopy with the scanning force microscope in experiment and simulation, Ultramicroscopy 66, 251–259 (1996)

    Article  CAS  Google Scholar 

  54. D. DeVecchio, B. Bhushan: Localized surface elasticity measurements using an atomic force microscope, Rev. Sci. Instrum. 68, 4498–4505 (1997)

    Article  CAS  Google Scholar 

  55. V. Scherer, B. Bhushan, U. Rabe, W. Arnold: Local elasticity and lubrication measurements using atomic force and friction force microscopy at ultrasonic frequencies, IEEE Trans. Magn. 33, 4077–4079 (1997)

    Article  CAS  Google Scholar 

  56. S. Amelio, A.V. Goldade, U. Rabe, V. Scherer, B. Bhushan, W. Arnold: Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy, Thin Solid Films 392, 75–84 (2001)

    Article  CAS  Google Scholar 

  57. W.W. Scott, B. Bhushan: Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly-thick lubricant films, Ultramicroscopy 97, 151–169 (2003)

    Article  CAS  Google Scholar 

  58. B. Bhushan, J. Qi: Phase contrast imaging of nanocomposites and molecularly-thick lubricant films in magnetic media, Nanotechnology 14, 886–895 (2003)

    Article  CAS  Google Scholar 

  59. T. Kasai, B. Bhushan, L. Huang, C. Su: Topography and phase imaging using the torsional resonance mode, Nanotechnology 15, 731–742 (2004)

    Article  CAS  Google Scholar 

  60. N. Chen, B. Bhushan: Morphological, nanomechanical and cellular structural characterization of human hair and conditioner distribution using torsional resonance mode in an AFM, J. Micros. 220, 96–112 (2005)

    Article  CAS  Google Scholar 

  61. M.S. Bobji, B. Bhushan: Atomic force microscopic study of the micro-cracking of magnetic thin films under tension, Scripta Mater. 44, 37–42 (2001)

    Article  CAS  Google Scholar 

  62. M.S. Bobji, B. Bhushan: In-situ microscopic surface characterization studies of polymeric thin films during tensile deformation using atomic force microscopy, J. Mater. Res. 16, 844–855 (2001)

    Article  CAS  Google Scholar 

  63. N. Tambe, B. Bhushan: In situ study of nano-cracking of multilayered magnetic tapes under monotonic and fatigue loading using an AFM, Ultramicroscopy 100, 359–373 (2004)

    Article  CAS  Google Scholar 

  64. B. Bhushan, T. Kasai, C.V. Nguyen, M. Meyyappan: Multiwalled carbon nanotube AFM probes for surface characterization of micro/nanostructures, Microsys. Technol. 10, 633–639 (2004)

    Article  CAS  Google Scholar 

  65. B. Bhushan: Micro/nanotribology and its applications to magnetic storage devices and MEMS, Tribol. Int. 28, 85–95 (1995)

    Article  CAS  Google Scholar 

  66. D. DeVecchio, B. Bhushan: Use of a nanoscale Kelvin probe for detecting wear precursors, Rev. Sci. Instrum. 69, 3618–3624 (1998)

    Article  CAS  Google Scholar 

  67. B. Bhushan, A.V. Goldade: Measurements and analysis of surface potential change during wear of single crystal silicon (100) at ultralow loads using Kelvin probe microscopy, Appl. Surf. Sci 157, 373–381 (2000)

    Article  CAS  Google Scholar 

  68. B. Bhushan, A.V. Goldade: Kelvin probe microscopy measurements of surface potential change under wear at low loads, Wear 244, 104–117 (2000)

    Article  CAS  Google Scholar 

  69. H.U. Krotil, T. Stifter, H. Waschipky, K. Weishaupt, S. Hild, O. Marti: Pulse force mode: A new method for the investigation of surface properties, Surf. Interface Anal. 27, 336–340 (1999)

    Article  CAS  Google Scholar 

  70. U. Rabe, K. Janser, W. Arnold: Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment, Rev. Sci. Instrum. 67, 3281–3293 (1996)

    Article  CAS  Google Scholar 

  71. J. Tamayo, R. Garcia: Deformation, contact time, and phase contrast in tapping mode scanning force microscopy, Langmuir 12, 4430–4435 (1996)

    Article  CAS  Google Scholar 

  72. R. Garcia, J. Tamayo, M. Calleja, F. Garcia: Phase contrast in tapping-mode scanning force microscopy, Appl. Phys. A 66, 309–312 (1998)

    Article  Google Scholar 

  73. Y. Song, B. Bhushan: Quantitative extraction of in-plane surface properties using torsional resonance mode in atomic force microscopy, J. Appl. Phys. 87, 83533 (2005)

    Article  CAS  Google Scholar 

  74. B. Bhushan, J. Ruan, B.K. Gupta: A scanning tunnelling microscopy study of Fullerene films, J. Phys. D: Appl. Phys. 26, 1319–1322 (1993)

    Article  CAS  Google Scholar 

  75. G.A. Tomlinson: A molecular theory of friction, Phil. Mag. Ser. 7, 905–939 (1929)

    CAS  Google Scholar 

  76. D. Tomanek, W. Zhong, H. Thomas: Calculation of an atomically modulated friction force in atomic force microscopy, Europhys. Lett. 15, 887–892 (1991)

    Article  CAS  Google Scholar 

  77. E. Meyer, R. Overney, R. Luthi, D. Brodbeck, L. Howald, J. Frommer, H.J. Guntherodt, O. Wolter, M. Fujihira, T. Takano, Y. Gotoh: Friction force microscopy of mixed Langmuir–Blodgett films, Thin Solid Films 220, 132–137 (1992)

    Article  CAS  Google Scholar 

  78. C.D. Frisbie, L.F. Rozsnyai, A. Noy, M.S. Wrighton, C.M. Lieber: Functional group imaging by chemical force microscopy, Science 265, 2071–2074 (1994)

    Article  CAS  Google Scholar 

  79. V.N. Koinkar, B. Bhushan: Effect of scan size and surface roughness on microscale friction measurements, J. Appl. Phys. 81, 2472–2479 (1997)

    Article  CAS  Google Scholar 

  80. S. Sundararajan, B. Bhushan: Topography-induced contributions to friction forces measured using an atomic force/friction force microscope, J. Appl. Phys. 88, 4825–4831 (2000)

    Article  CAS  Google Scholar 

  81. B. Bhushan, G.S. Blackman: Atomic force microscopy of magnetic rigid disks and sliders and its applications to tribology, ASME J. Tribol. 113, 452–458 (1991)

    Google Scholar 

  82. K. Yamanaka, E. Tomita: Lateral force modulation atomic force microscope for selective imaging of friction forces, Jpn. J. Appl. Phys. 34, 2879–2882 (1995)

    Article  CAS  Google Scholar 

  83. O. Marti, H.-U. Krotil: Dynamic Friction Measurement With the Scanning Force Microscope. In: Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales, ed. by B. Bhushan (Kluwer, Dordrecht 2001) pp.121–135

    Google Scholar 

  84. N.S. Tambe, B. Bhushan: Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants, Nanotechnology 15, 1561–1570 (2004)

    Article  CAS  Google Scholar 

  85. N.S. Tambe, B. Bhushan: Friction model for the velocity dependence of nanoscale friction, Nanotechnology 16, 2309–2324 (2005)

    Article  Google Scholar 

  86. N.S. Tambe, B. Bhushan: Durability studies of micro/nanoelectromechanical system materials, coatings, and lubricants at high sliding velocities (up to 10 mm/s) using a modified atomic force microscope, J. Vac. Sci. Technol. A 23, 830–835 (2005)

    Article  CAS  Google Scholar 

  87. N.S. Tambe, B. Bhushan: Nanoscale friction-induced phase transformation of diamond-like carbon, Scripta Materiala 52, 751–755 (2005)

    Article  CAS  Google Scholar 

  88. K. Mizuhara, S.M. Hsu: Tribochemical Reaction of Oxygen and Water on Silicon Surfaces. In: Wear Particles, ed. by D. Dowson (Elsevier Science, Amsterdam 1992) pp.323–328

    Google Scholar 

  89. T. Bouhacina, J.P. Aime, S. Gauthier, D. Michel: Tribological behavior of a polymer grafted on silanized silica probed with a nanotip, Phys. Rev. B. 56, 7694–7703 (1997)

    Article  CAS  Google Scholar 

  90. E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, H.-J. Guntherodt: Velocity dependence of atomic friction, Phys. Rev. Lett. 84, 1172–1175 (2000)

    Article  CAS  Google Scholar 

  91. N.S. Tambe, B. Bhushan: Nanoscale friction mapping, Appl. Phys. Lett. 86, 193102–1–193102–3 (2005)

    Article  CAS  Google Scholar 

  92. A. Grill: Tribology of diamondlike carbon and related materials: An updated review, Surf. Coat. Technol. 94-95, 507–513 (1997)

    Article  CAS  Google Scholar 

  93. N.S. Tambe, B. Bhushan: Identifying materials with low friction and adhesion for nanotechnology applications, Appl. Phys. Lett 86, 061906–1–061906–3 (2005)

    Article  CAS  Google Scholar 

  94. N.S. Tambe, B. Bhushan: Nanowear mapping: A novel atomic force microscopy based approach for studying nanoscale wear at high sliding velocities, Tribol. Lett. 20, 83–90 (2005)

    Article  CAS  Google Scholar 

  95. S.C. Lim, M.F. Ashby: Wear mechanism maps, Acta Metall. 35, 1–24 (1987)

    Article  CAS  Google Scholar 

  96. S.C. Lim, M.F. Ashby, J.H. Brunton: Wear-rate transitions and their relationship to wear mechanisms, Acta Metall. 35, 1343–1348 (1987)

    Article  CAS  Google Scholar 

  97. B. Bhushan, C. Dandavate: Thin-film friction and adhesion studies using atomic force microscop, J. Appl. Phys. 87, 1201–1210 (2000)

    Article  CAS  Google Scholar 

  98. B. Bhushan: Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction, (invited), J. Vac. Sci. Technol. B 21, 2262–2296 (2003)

    Article  CAS  Google Scholar 

  99. T. Stifter, O. Marti, B. Bhushan: Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning probe microscopy, Phys. Rev. B 62, 13667–13673 (2000)

    Article  CAS  Google Scholar 

  100. U.D. Schwarz, O. Zwoerner, P. Koester, R. Wiesendanger: Friction Force Spectroscopy in the Low-load Regime with Well-defined Tips. In: Micro/Nanotribology and Its Applications, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1997) pp.233–238

    Google Scholar 

  101. M. Nosonovsky, B. Bhushan: Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces, Microsyst. Technol. 12, 231–237 (2005)

    Article  CAS  Google Scholar 

  102. M. Nosonovsky, B. Bhushan: Roughness optimization for biomimetic superhydrophobic surfaces, Microsyst. Technol. 11, 535–549 (2005)

    Article  CAS  Google Scholar 

  103. R.N. Wenzel: Resistance of solid surfaces to wetting by water, Indus. Eng. Chem. 28, 988–994 (1936)

    Article  CAS  Google Scholar 

  104. A. Cassie, S. Baxter: Wetting of porous surfaces, Trans. Faraday Soc. 40, 546–551 (1944)

    Article  CAS  Google Scholar 

  105. Z. Burton, B. Bhushan: Hydrophobicity, adhesion and friction properties with nanopatterned roughness and scale dependence, Nano Lett. 5, 1607–1613 (2005)

    Article  CAS  Google Scholar 

  106. B. Bhushan, H. Liu, S.M. Hsu: Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects, ASME J. Tribol. 126, 583–590 (2004)

    Article  CAS  Google Scholar 

  107. H. Liu, B. Bhushan: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus, J. Vac. Sci. Technol. A 21, 1528–1538 (2003)

    Article  CAS  Google Scholar 

  108. B. Bhushan, B.K. Gupta: Handbook of Tribology: Materials, Coatings and Surface Treatments (McGraw-Hill, New York 1991) reprinted Krieger, Malabar Florida, 1997

    Google Scholar 

  109. B. Bhushan, S. Venkatesan: Mechanical and tribological properties of silicon for micromechanical applications: A Review, Adv. Info. Storage Sys. 5, 211–239 (1993)

    Google Scholar 

  110. Anonymous: Properties of Silicon, EMIS Data Reviews Series No. 4. INSPEC, Institution of Electrical Engineers, London. See also Anonymous, MEMS Materials Database, http://www.memsnet.org/material/ (2002)

    Google Scholar 

  111. J.E. Field: The properties of natural and synthetic diamond (Academic, London 1992)

    Google Scholar 

  112. B. Bhushan: Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: Recent developments, Diamond and Related Materials 8, 1985–2015 (1999)

    Article  CAS  Google Scholar 

  113. Anonymous: The Industrial Graphite Engineering Handbook (National Carbon Company, New York 1959)

    Google Scholar 

  114. M. Nosonovsky, B. Bhushan: Scale effects in dry friction during multiple-asperity contact, ASME J. Tribol. 127, 37–46 (2005)

    Article  Google Scholar 

  115. B. Bhushan, M. Nosonovsky: Comprehensive model for scale effects in friction due to adhesion and two- and three-body deformation (plowing), Acta Mater. 52, 2461–2474 (2004)

    Article  CAS  Google Scholar 

  116. B. Bhushan, M. Nosonovsky: Scale effects in dry and wet friction, wear, and interface temperature, Nanotechnology 15, 749–761 (2004)

    Article  CAS  Google Scholar 

  117. B. Bhushan, M. Nosonovsky: Scale effects in friction using strain gradient plasticity and dislocation-assisted sliding (microslip), Acta Mater. 51, 4331–4345 (2003)

    Article  CAS  Google Scholar 

  118. V.N. Koinkar, B. Bhushan: Scanning and transmission electron microscopies of single-crystal silicon microworn/machined using atomic force microscopy, J. Mater. Res. 12, 3219–3224 (1997)

    Article  CAS  Google Scholar 

  119. X. Zhao, B. Bhushan: Material removal mechanism of single-crystal silicon on nanoscale and at ultralow loads, Wear 223, 66–78 (1998)

    Article  CAS  Google Scholar 

  120. B. Bhushan, P.S. Mokashi, T. Ma: A new technique to measure Poisson’s ratio of ultrathin polymeric films using atomic force microscopy, Rev. Sci. Instrum. 74, 1043–1047 (2003)

    Article  CAS  Google Scholar 

  121. A.V. Kulkarni, B. Bhushan: Nanoscale mechanical property measurements using modified atomic force microscopy, Thin Solid Films 290-291, 206–210 (1996)

    Article  CAS  Google Scholar 

  122. A.V. Kulkarni, B. Bhushan: Nano/picoindentation measurements on single-crystal aluminum using modified atomic force microscopy, Mater. Lett. 29, 221–227 (1996)

    Article  CAS  Google Scholar 

  123. A.V. Kulkarni, B. Bhushan: Nanoindentation measurement of amorphous carbon coatings, J. Mater. Res. 12, 2707–2714 (1997)

    Article  CAS  Google Scholar 

  124. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson: Strain gradient plasticity: Theory and experiment, Acta Metall. Mater. 42, 475–487 (1994)

    Article  CAS  Google Scholar 

  125. W.D. Nix, H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids 46, 411–425 (1998)

    Article  CAS  Google Scholar 

  126. W.B. Li, J.L. Henshall, R.M. Hooper, K.E. Easterling: The mechanism of indentation creep, Acta Metall. Mater. 39, 3099–3110 (1991)

    Article  CAS  Google Scholar 

  127. F.P. Bowden, D. Tabor: The Friction and Lubrication of Solids (Clarendon, Oxford 1950)

    Google Scholar 

  128. Z. Tao, B. Bhushan: Bonding, degradation, and environmental effects on novel perfluoropolyether lubricants, Wear 259, 1352–1361 (2005)

    Article  CAS  Google Scholar 

  129. H. Liu, B. Bhushan, W. Eck, V. Staedtler: Investigation of the adhesion, friction, and wear properties of biphenyl thiol self-assembled monolayers by atomic force microscopy, J. Vac. Sci. Technol. A 19, 1234–1240 (2001)

    Article  CAS  Google Scholar 

  130. H. Liu, B. Bhushan: Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains, Ultramicroscopy 91, 185–202 (2002)

    Article  CAS  Google Scholar 

  131. T. Kasai, B. Bhushan, G. Kulik, L. Barbieri, P. Hoffman: Nanotribological study of perfluorosilane SAMs for anti-stiction and low wear, J. Vac. Sci. Technol. B 23, 995–1003 (2005)

    Article  CAS  Google Scholar 

  132. K.K. Lee, B. Bhushan, D. Hansford: Nanotribological characterization of perfluoropolymer thin films for biomedical micro/nanoelectrone chemical systems applications, J. Vac. Sci. Technol. A 23, 804–810 (2005)

    Article  CAS  Google Scholar 

  133. B. Bhushan, D. Hansford, K.K. Lee: Surface modification of silicon and polymethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices, J. Vac. Sci. Technol. A 24, 1197–1202 (2006)

    Article  CAS  Google Scholar 

  134. N.S. Tambe, B. Bhushan: Nanotribological characterization of self assembled monolayers deposited on silicon and aluminum substrates, Nanotechnology 16, 1549–1558 (2005)

    Article  CAS  Google Scholar 

  135. Z. Tao, B. Bhushan: Degradation mechanisms and environmental effects on perfluoropolyether, self assembled monolayers, and diamondlike carbon films, Langmuir 21, 2391–2399 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B. (2008). Nanotribology, Nanomechanics and Materials Characterization. In: Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77608-6_8

Download citation

Publish with us

Policies and ethics