Skip to main content

Constructing Optimal XOR-Functions to Minimize Cache Conflict Misses

  • Conference paper
Architecture of Computing Systems – ARCS 2008 (ARCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4934))

Included in the following conference series:

Abstract

Stringent power and performance constraints, coupled with detailed knowledge of the target applications of a processor, allows for application-specific processor optimizations. It has been shown that application-specific reconfigurable hash functions eliminate a large number of cache conflict misses. These hash functions minimize conflicts by modifying the mapping of cache blocks to cache sets.

This paper describes an algorithm to compute optimal XOR- functions, a particular type of hash functions based on XORs. Using this algorithm, we set an upper bound on the conflict reduction achievable with XOR-functions. We show that XOR-functions perform better than other reconfigurable hash functions studied in the literature such as bit-selecting functions.

The XOR-functions are optimal for one particular execution of a program. However, we show that optimal XOR-functions are less sensitive to the characteristics of the execution than optimal bit-selecting hash functions. This again underlines that XOR-functions are the best known hash functions to implement reconfigurable hash functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vandierendonck, H., Manet, P., Legat, J.D.: Application-specific reconfigurable XOR-indexing to eliminate cache conflict misses. In: Design, Automation and Test Europe, pp. 357–362 (March 2006)

    Google Scholar 

  2. Vandierendonck, H.: Avoiding Mapping Conflicts in Microprocessors. PhD thesis, Ghent University (2004)

    Google Scholar 

  3. Rau, B.R.: Pseudo-randomly interleaved memory. In: Proceedings of the 18th Annual International Symposium on Computer Architecture, pp. 74–83 (May 1991)

    Google Scholar 

  4. Vandierendonck, H., De Bosschere, K.: XOR-based hash functions. IEEE Transactions on Computers 54(7), 800–812 (2005)

    Article  Google Scholar 

  5. Patel, K., et al.: Reducing cache misses by application-specific re-configurable indexing. In: ICCAD 2004: ACM/IEEE International Conference on Computer-Aided Design, pp. 125–130 (November 2004)

    Google Scholar 

  6. Givargis, T.: Improved indexing for cache miss reduction in embedded systems. In: Design Automation Conference (2003)

    Google Scholar 

  7. Abraham, S.G., Agusleo, H.: Reduction of cache interference misses through selective bit-permutation mapping. Technical Report CSE-TR-205-94, The University of Michigan (1994)

    Google Scholar 

  8. Smith, A.J.: Cache memories. ACM Computing Surveys 14(3), 473–530 (1982)

    Article  Google Scholar 

  9. Temam, O.: Investigating optimal local memory performance. In: Proceedings of the 8th International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 218–227 (November 1998)

    Google Scholar 

  10. Vandierendonck, H., De Bosschere, K.: An optimal replacement policy for balancing multi-module caches. In: Proceedings of the 12th Symposium on Computer Architecture and High Performance Computing, pp. 65–72 (October 2000)

    Google Scholar 

  11. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)

    Article  Google Scholar 

  12. Bahar, R., et al.: Algebraic decision diagrams and their applications. In: ICCAD 1993: Proceedings of the 1993 IEEE/ACM international conference on Computer-aided design, pp. 188–191 (1993)

    Google Scholar 

  13. Scott, J., et al.: Designing the low-power M Core architecture. In: Proceedings of the IEEE Power Driven Microarchitecture Workshop, pp. 145–150 (June 1998)

    Google Scholar 

  14. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: MediaBench: A tool for evaluating and synthesizing multimedia and communications systems. In: Proceedings of the 30th Conference on Microprogramming and Microarchitecture, pp. 330–335 (December 1997)

    Google Scholar 

  15. Guthaus, M.R., et al.: MiBench: A free, commercially representative embedded benchmark suite. In: IEEE 4th Annual Workshop on Workload Characterization (December 2001)

    Google Scholar 

  16. Topham, N., González, A., González, J.: The design and performance of a conflict-avoiding cache. In: Proceedings of the 30th Conference on Microprogramming and Microarchitecture, pp. 71–80 (December 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Uwe Brinkschulte Theo Ungerer Christian Hochberger Rainer G. Spallek

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vandierendonck, H., De Bosschere, K. (2008). Constructing Optimal XOR-Functions to Minimize Cache Conflict Misses. In: Brinkschulte, U., Ungerer, T., Hochberger, C., Spallek, R.G. (eds) Architecture of Computing Systems – ARCS 2008. ARCS 2008. Lecture Notes in Computer Science, vol 4934. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78153-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78153-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78152-3

  • Online ISBN: 978-3-540-78153-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics