Skip to main content

Remote sensing of terrestrial chlorophyll content

  • Chapter
Global Climatology and Ecodynamics

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Terrestrial chlorophyll content is a key environmental variable that is difficult to estimate accurately using remotely sensed data. Some of the pioneering studies in this field were undertaken by Kirill Kondratyev and co-workers in the 1970s and early 1980s. These studies paved the way for the operational global chlorophyll content maps of today. This chapter reviews some of Kondratyev’s pioneering contributions to the development of the theory and practice for the remote sensing of terrestrial chlorophyll content. In particular, the chapter summarizes a third of a century of scientific research before concluding with a discussion of three contemporary applications of the remote sensing of terrestrial chlorophyll content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams M.L., Philpot W.D., and Norvell W.A. (1999). Yellowness Index: An application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. Int. J. Remote Sensing. 20, 3663–3675.

    Article  Google Scholar 

  • Almond S.F., Boyd D.S., Curran P.J., and Dash J. (2007). The response of UK vegetation to elevated temperatures in 2006: Coupling Envisat MERIS Terrestrial Chlorophyll Index (MTCI) and mean air temperature. Challenges for Earth Observation: Technical and Commercial. Remote Sensing and Photogrammetry Society, Nottingham, U.K. (CD-ROM).

    Google Scholar 

  • Anger C.D., Achal S., Ivanco T., Mah S., and Price R. (1996). Extended operational capabilities of CASI Proc. Second Int. Airborne Remote Sensing Conf.: San Francisco. California, pp. 124–133. Environmental Research Institute, Ann Arbor, MI.

    Google Scholar 

  • Banninger C. (1991). Phenological changes in the red edge shift of Norway spruce needles and their relationship to needle chlorophyll content. Proc. Fifth Int. Colloquium: Physical Measurements and Signatures in Remote Sensing. Courcheval. France, pp. 155–158. European Space Agency, Noordwijk, ESA SP-319.

    Google Scholar 

  • Banwell C.N. (1994). Fundamentals of Molecular Spectroscopy. McGraw-Hill, London.

    Google Scholar 

  • Baranoski G.V.G. and Ronke J.G. (2005). A practical approach for estimating the red edge position of plant leaf reflectance. Int. J. Remote Sensing, 26, 503–521.

    Article  Google Scholar 

  • Baret F. and Fourty T. (1997). Radiometric estimates of nitrogen status of leaves and canopies. In G. Lemaire (ed.), Diagnosis of the Nitrogen Status in Crops, pp. 207–227. Springer-Verlag, Berlin.

    Google Scholar 

  • Baret F., Jacquemoud S., Guyot G. and Leprieur C. (1992). Modelled analysis of the biophysical nature of spectral shifts and comparison with information content of broad band. Remote Sensing of Environment, 41, 133–142.

    Article  Google Scholar 

  • Birth G.S. and Hecht H.G. (1987). The physics of near infrared reflectance. In P. Williams and K. Norris (eds.), Near-Infrared Technology in Agricultural and Food Industry, pp. 1–6. American Association of Cereal Chemists, St. Paul, MN.

    Google Scholar 

  • Blackburn G.A. (1998). Quantifying chlorophyll and carotenoids at leaf and canopy scales: An evaluation of some hyperspectral data. Remote Sensing of Environment, 66, 273–285.

    Article  Google Scholar 

  • Blackburn G.A. (2007). Hyperspectral remote sensing of plant pigments. J. Experimental Botany, 58, 855–867.

    Article  Google Scholar 

  • Bonham-Carter G.F. (1988). Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data. Computers and Geosciences, 14, 339–356.

    Article  Google Scholar 

  • Bouma P.J. (1971). Physical Aspects of Colour, second edition. Macmillan, London.

    Google Scholar 

  • Boyd D.S., Entwistle J.A., Flowers A.G., Armitage R.P., and Goldsmith P.C. (2006). Remote sensing the radionuclide contaminated Belorussian landscape: A potential for imaging spectrometry. Int. J. Remote Sensing, 27, 1865–1874.

    Article  Google Scholar 

  • Boyd D.S., Almond S.F., Dash J., and Curran P.J. (2007). Investigating the factors affecting the relationship between the Envisat MERIS Terrestrial Chlorophyll Index (MTCI) and chlorophyll content: Preliminary findings. Challenges for Earth Observation: Scientific. Technical and Commercial. Remote Sensing and Photogrammetry Society, Nottingham, U. K. (CD-ROM).

    Google Scholar 

  • Broge N.H. and Leblanc E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172.

    Article  Google Scholar 

  • Carter G.A. (1993). Responses of leaf spectral reflectance to plant stress. Amer. J. Botany, 80, 239–243.

    Article  Google Scholar 

  • Castro-Esau K.L., Sanchez-Azofeifa G.A., Rivard B., Wright S.J., and Quesada, M. (2006). Variability in leaf optical properties of Mesoamerican trees and the potential for species classification. Amer. J. Botany, 93, 517–530.

    Article  Google Scholar 

  • Choudhury B.J. (1987). Relationship between vegetation indices, radiation absorption and net photosynthesis evaluated by a, sensitivity analysis. Remote Sensing of Environment, 22. 209–233.

    Article  Google Scholar 

  • Clark R.N., King T.V.V., Ager C., and Swayze G.A. (1995). Initial vegetation species and senescence/stress indicator mapping in the San Luis valley, Colorado using imaging spectrometer data. Proc. AVIRIS Airborne Geoscience Workshop, Pasadena, Callifornia, pp. 35–38. NASA Jet Propulsion Laboratory, Pasadena, CA.

    Google Scholar 

  • Clevers J.G.P.W., De Jong S.M., Epema G.F., Van Der Meer F., Bakker W.H., Skidmore A.K., and Scholte K.H. (2002). Derivation of the red edge index using the MERIS standard band setting. Int. J. Remote Sensing, 23, 3169–3184.

    Article  Google Scholar 

  • Curran P.J. (1980). Multispectral remote sensing of vegetation amount. Progress in Physical Geography, 4, 315–341.

    Article  Google Scholar 

  • Curran P.J. (1983). Multispectral remote sensing for the estimation of green leaf area index. Philos. Trans. Royal Society of London. Series A., 309, 257–270.

    Article  Google Scholar 

  • Curran.. J. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment 30, 271–278.

    Article  Google Scholar 

  • Curran P.J. (2001). Imaging spectrometry for ecological applications. Int. J. Applied Earth Observation and Geoinformation, 3, 305–312.

    Article  Google Scholar 

  • Curran P.J. and Steele C.M. (2005). MERIS: The re-branding of an ocean sensor. Int. J. Remote Sensing, 26, 1781–1798.

    Article  Google Scholar 

  • Curran P.J., Dungan J.L., and Gholz H.L. (1990a). Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology, 7, 33–48.

    Article  Google Scholar 

  • Curran P.J., Foody G.M., Kondratyev K.Ya., Kozoderov V.V., and Fedchenko P.P. (1990b). Remote Sensing of Soils and Vegetation in the USSR. Taylor & Francis, London.

    Google Scholar 

  • Curran P.J., Windham W.R., and Gholz H.L. (1995). Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. Tree Physiology, 15, 203–206.

    Article  Google Scholar 

  • Curran P.J., Kupiec J.A., and Smith G.M. (1997). Remote sensing the biochemical composition of a slash pine canopy. IEEE Trans. Geoscience and Remote Sensing, 35, 415–420.

    Article  Google Scholar 

  • Curran P.J., Dash J., and Llewellyn G.M. (2007a). The Indian Ocean Tsunami: Use of the MERIS (MTCI) data to detect salt stress on near coastal vegetation. Int. J. Remote Sensing, 28, 729–735.

    Article  Google Scholar 

  • Curran P.J., Dash J., Lankester T., and Hubbard S. (2007b). Global composites of the MERIS Terrestrial Chlorophyll Index. Int. J. Remote Sensing, 28, 3757–3758.

    Article  Google Scholar 

  • Danson F.M. and Plummer S.E. (1995). Red edge response to forest leaf area index. Int. J. Remote Sensing, 16, 183–188.

    Article  Google Scholar 

  • Dash J. and Curran P.J. (2004). The MERIS Terrestrial Chlorophyll Index. Int. J. Remote Sensing, 25, 5003–5013.

    Article  Google Scholar 

  • Dash J. and Curran P.J. (2006). Relationship between herbicide concentration during the 1960s and 1970s and the contemporary MERIS Terrestrial Chlorophyll Index (MTCI) for southern Vietnam. Int. J. Geographical Information Science, 20, 929–939.

    Article  Google Scholar 

  • Dash J. and Curran P.J. (2007). Relationship between the MERIS vegetation indices and crop yield for the state of South Dakota, USA. Second Envisat Symposium. European Space Agency, Noordwijk, ESA SP-636 (CD-ROM).

    Google Scholar 

  • Dash J. and Curran P.J. (2008). The relationship between MTCI and terrestrial chlorophyll content. Int. J. Remote Sensing, 29 (in press).

    Google Scholar 

  • Dash J., Curran P.J., Tallis M.J., Llewellyn G.M., Taylor G., and Snoeij P. (2007a). The relationship between the MERIS Terrestrial Chlorophyll Index and chlorophyll content. Second Envisat Symposium. European Space Agency, Noordwijk, ESA SP-636 (CD-ROM).

    Google Scholar 

  • Dash J., Mathur A., Foody G.M., Curran P.J., Chipman J., and Lillesand T.M. (2007b). Landcover classification using multi-temporal MERIS vegetation indices. Int. J. Remote Sensing, 28, 1137–1159.

    Article  Google Scholar 

  • Daughtry C.S.T., Walthall C.L., Kim M.S., Brown de Colstoun E., and McMurtrey III J.E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74, 229–239.

    Article  Google Scholar 

  • Dawson, T.P. and Curran P.J. (1998). A new technique for interpolating the reflectance red edge position. Int. J. Remote Sensing, 19, 2133–2139.

    Article  Google Scholar 

  • Dawson T.P., Curran P.J., and Plummer S.E. (1998). LIBERTY: Modelling the effects of leaf biochemical concentration on reflectance spectra. Remote Sensing of Environment, 65, 50–60.

    Article  Google Scholar 

  • Dawson T.P., Curran P.J., North P.R.J., and Plummer S.E. (1999). The propagation of foliar biochemical absorption features in forest canopy reflectance: A theoretical analysis. Remote Sensing of Environment, 67, 147–159.

    Article  Google Scholar 

  • Demetriades-Shah T.H., Steven M.D., and Clark J.A. (1990). High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 33, 55–64.

    Article  Google Scholar 

  • Fedchenko P.P. (1982). A Remote Sensing Technique to Assess the Green Crop Canopy Mass. Invention Bulletin A.C. No. 969204. U.S.S.R. Technical Press, Moscow.

    Google Scholar 

  • Feddema J.J., Oleson K.W., Bonan G.B., Mearns L.O., Buja L.E., Meehl G., and Washington W.M. (2005). The importance of land-cover change in simulating future climate. Science, 5754, 1674–1677.

    Article  Google Scholar 

  • Filella I. and Peñuelas J. (1994). The red edge position and shape as indicator of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sensing, 15, 1459–1470.

    Article  Google Scholar 

  • Gausmann H.W. (1974). Leaf reflectance of near-infrared. Photogrammetric Engineering, 40, 183–191.

    Google Scholar 

  • Gitelson A.A. and Merzlyak M.N. (1998). Remote sensing of chlorophyll concentration in higher plant leaves. Advances in Space Research, 22, 689–692.

    Article  Google Scholar 

  • Gitelson A.A., Viña A., Verma S.B., Rundquist D.C., Arkebauer T.J., Keydan G., Leavitt B., Ciganda V., Burba G.G., and Suyker A.E. (2006). Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. J. Geophys. Res., 111, D08S11.

    Article  Google Scholar 

  • Guyot G., Baret F., and Major D.J. (1988). High spectral resolution: Determination of spectral shifts between the red and the near infrared. Int. Archives of Photogrammetry and Remote Sensing, 11, 740–760.

    Google Scholar 

  • Hare E.W., Miller J.R., and Edwards G.R. (1984). Studies of the vegetation red reflectance edge in geobotanical remote sensing in eastern Canada. Proc. Ninth Canadian Symp. on Remote Sensing, Newfoundland, pp. 433–440. Canadian Astronautics and Space Institute, Ottawa.

    Google Scholar 

  • Herring M. (1987). Shuttle Imaging Spectrometer Experiment (SISEX): Imaging Spectroscopy II. SPIE, Bellingham, WA [Proc. SPIE, 384, 181–187].

    Book  Google Scholar 

  • Horler D.N.H., Barber J., and Barringer A.R. (1980). Effect of heavy metals on the absorption and reflectance spectra of plants. Int. J. Remote Sensing, 1, 121–136.

    Google Scholar 

  • Horler D.N.H., Dockray M., and Barber J. (1983). The red edge of plant leaf reflectance. Int. J. Remote Sensing, 4, 273–288.

    Article  Google Scholar 

  • Hunt R.W.G. (1987). Measuring Colour. Ellis Horwood, Chichester, U.K.

    Google Scholar 

  • Jago R.A., Curran P.J., and Cutler M.E.J. (1997). Estimating canopy chlorophyll concentration from both field and airborne spectra. In G. Guyot and T. Phulpin (eds.), Physical Measurements and Signatures in Remote Sensing, pp. 517–521. Balkema, Rotterdam.

    Google Scholar 

  • Jago R.A., Cutler M.E., and Curran P.J. (1999). Estimation of canopy chlorophyll concentration from field and airborne spectra. Remote Sensing of Environment, 68, 217–224.

    Article  Google Scholar 

  • Jeffrey A. (1985). Mathematics for Engineers and Scientists. Van Nostrand Reinhold, Wokingham, U.K.

    Google Scholar 

  • Jensen R.R. and Binford M.W. (2004). Measurement and comparison of leaf area index estimators derived from satellite remote sensing techniques. Int. J. Remote Sensing, 25, 4251–4265.

    Article  Google Scholar 

  • Johnson L.F. (1999). Response of Grape Leaf Spectra to Phylloxera Infestation, NASA Report #CR-208765. NASA Center for AeroSpace Information, Hanover, MD.

    Google Scholar 

  • Justice C. and Townshend J. (2002). Special issue on the moderate resolution imaging spectro-radiometer (MODIS): A new generation of land surface monitoring. Remote Sensing of Environment, 83, 1–2.

    Article  Google Scholar 

  • Kozoderov V.V. and Dmitriev E.V. (2008). Remote sensing of soils and vegetation: Regional aspects. Int. J. Remote Sensing, 29, 2733–2748.

    Article  Google Scholar 

  • Kondratyev K.Ya. and Fedchenko P.P. (1979). Spectral reflectance of some weeds. Doklady U.S.S.R. Academy of Sciences, 248, 1318–1320.

    Google Scholar 

  • Kondratyev K.Ya. and Fedchenko P.P. (1982a). Remote sensing of areas under damaged and dead winter crops. Meteorology and Hydrology, 8, 102–108.

    Google Scholar 

  • Kondratyev K.Ya. and Fedchenko P.P. (1982b). Spectral Reflectivity and Recognition of Some Vegetation Types. Hydrometeoizdat, Leningrad.

    Google Scholar 

  • Kondratyev K.Ya. and Smoktiy O.I. (1973). On the determination of the spectral transfer function for the brightness of natural formations and their contrasts in spectrophotometry of the atmosphere-surface system from space. Trudy MGO, 295, 24–25.

    Google Scholar 

  • Kondratyev K.Ya., Badinov I.Ya., Ivlev L.S., and Nikolsky G.A. (1969). Aerosol structure of the troposphere and stratosphere. Physics of the Atmosphere and Ocean, 5, 480–493.

    Google Scholar 

  • Kondratyev K.Ya., Fedchenko P.P., and Barmina Yu.M. (1982a). An experience in determining the chlorophyll content in the leaves of plants from colour coordinates. Doklady U.S.S.R. Academy of Sciences, 262, 1022–1024.

    Google Scholar 

  • Kondratyev K.Ya., Kozoderov V.V., and Fedchenko P.P. (1982b). Possibilities of determining the chlorophyll content in plants from their reflectance spectra. Studies of the Earth from Space, 3, 63–68.

    Google Scholar 

  • Kondratyev K.Ya., Kozoderov V.V., Fedchenko P.P., and Barmina Yu.M. (1982c). On the determination of the chlorophyll content in the leaves of plants from data of spectral measurements. Doklady U.S.S.R. Academy of Sciences, 256, 1508–1510.

    Google Scholar 

  • Kondratyev K.Ya., Kozoderov V.V., and Fedchenko P.P. (1986). Remote sensing of the state of crops and soils. Int. J. Remote Sensing, 7, 1213–1235.

    Article  Google Scholar 

  • Kondratyev K.Ya., Krapivin V.F., Savinykh V.P., and Varotsos C.A. (2004). Global Ecodynamics. Springer/Praxis, Chichester, U.K.

    Book  Google Scholar 

  • Kupiec J. and Curran P.J. (1995). Decoupling effect of the canopy and foliar biochemicals in AVIRIS spectra. Int. J. Remote Sensing, 16, 1731–1739.

    Article  Google Scholar 

  • Li L., Ustin S.L., and Lay M. (2005). Application of AVIRIS data in detection of oil-induced vegetation stress and cover change at Jornada, New Mexico. Remote Sensing of Environment, 94, 1–16.

    Article  Google Scholar 

  • Lichtenthaler H.K. (1987). Chlorophyll and carotenoids: Pigments of photosynthetic biomembranes. Methods of Enzymology, 184, 350–382.

    Article  Google Scholar 

  • Llewellyn G.M., Kooistra L., and Curran P.J. (2001). The red-edge of soil contaminated grassland. Proceedings Eighth Int. Symp.: Physical Measurements and Signature in Remote Sensing. International Society for Photogrammetry and Remote Sensing and Centre National D’Etudes Spatiales, Aussois, France, pp. 381–386.

    Google Scholar 

  • Loveland T.R., Reed B.C., Brown J.F., Ohlen D.O., Zhu Z., Yang L., and Merchant J.W. (2000). Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sensing, 21, 1303–1330.

    Article  Google Scholar 

  • Lucas N.S., Curran P.J., Plummer S.E., and Danson F.M. (2000). Estimating the stem carbon production of a coniferous forest using an ecosystem simulation model driven by the remotely sensed red edge. Int. J. Remote Sensing, 21, 619–631.

    Article  Google Scholar 

  • Mariotti M., Ercoli L., and Masoni A. (1996). Spectral properties of iron-deficient corn and sunflower leaves. Remote Sensing of Environment, 58, 282–288.

    Article  Google Scholar 

  • Merton R. (1998). Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index. AVIRIS Airborne Geosciences Workshop Proceedings, pp. 32–38. JPL Publication 97-21, NASA Jet Propulsion Laboratory, Pasadena, CA.

    Google Scholar 

  • Miller J.R., Hare E.W. and Wu J. (1990). Quantitative characterization of the vegetation red edge reflectance. 1: An inverted-Gaussian reflectance model. Int. J. Remote Sensing, 11, 1755–1773.

    Article  Google Scholar 

  • Milton E.J. (2000). Practical methodologies for the reflectance calibration of CASI data. Airborne Remote Sensing Facility Annual Meeting, Keyworth. Nottingham, U.K., pp. 1–14. NERC EPFS, Southampton, U.K.

    Google Scholar 

  • Milton N.M., Ager C.M., Eiswerth B.A., and Power M.S. (1989). Arsenic and selenium induced changes in spectral reflectance and morphology of soyabean plants. Remote Sensing of Environment, 30, 263–269.

    Article  Google Scholar 

  • Munden R., Curran P.J., and Catt J.A. (1994). The relationship between red edge and chlorophyll concentration in the Broadbalk winter wheat experiment at Rothamsted. Int. J. Remote Sensing, 15, 705–709.

    Article  Google Scholar 

  • Neimann K.O. (1995). Remote sensing of forest stands age using airborne spectrometer data. Photogrammetric Engineering and Remote Sensing, 61, 1119–1127.

    Google Scholar 

  • O’Neill A.L., Kupiec J.A., and Curran P.J. (2002). Biochemical and reflectance variation throughout a Stika spruce canopy. Remote Sensing of Environment, 80, 134–142.

    Article  Google Scholar 

  • Pinar A. and Curran P.J. (1996). Grass chlorophyll and the reflectance red edge. Int. J. Remote Sensing, 17, 351–357.

    Article  Google Scholar 

  • Railyan Y. and Korobov R.M. (1993). Red edge structure of canopy reflectance spectra of triticale. Remote Sensing of Environment, 46, 173–182.

    Article  Google Scholar 

  • Reeves D.W., Mask P.L., Wood C.W., and Delaney D.P. (1993). Determination of wheat nitrogen status with a hand-held chlorophyll meter influence of management-practices. J. Plant Nutrition, 16, 781–796.

    Article  Google Scholar 

  • Reeves M.C., Zhao M., and Running S.W. (2005). Usefulness and limits of MODIS GPP for estimating wheat yield. Int. J. Remote Sensing, 26, 1402–1421.

    Article  Google Scholar 

  • Smith K.L., Steven M.D., and Colls J.J. (2004). Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sensing of Environment, 92, 207–217.

    Article  Google Scholar 

  • Song C.H. (2005). Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability?. Remote Sensing of Environment, 95, 248–263.

    Article  Google Scholar 

  • Steven M.H., Malthus T.J., Demetriades-Shah T.H., Danson F.M., and Clark J.A. (1990). High-spectral resolution indices for crop stress. In M.D. Steven and J.A. Clark (eds.). Applications of Remote Sensing in Agriculture, pp. 201–228. Butterworth, London.

    Google Scholar 

  • Sushkevich T.A. (2008). Pioneering remote sensing in the USSR. I: Radiation transfer in the optical wavelength region of the electromagnetic spectrum. Int. J. Remote Sensing, 29, 2585–2597.

    Article  Google Scholar 

  • Tarasov K.I. (1968). Spectral Instruments. Mashinostroenie, Moscow [in Russian].

    Google Scholar 

  • Tobehn C., Kassebohm M., and Schmälter E. (2003). SPECTRA-ESA candidate Earth explorer core mission: Feasibility, results and outlook. Proc. Fourth IAA Symposium on Small Satellites for Earth Observation, Berlin, Germany. Wissenschaft und Technik Verlag, Berlin.

    Google Scholar 

  • Treitz P.M. and Howarth P.J. (1999). Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems. Progress in Physical Geography, 23, 359–390.

    Google Scholar 

  • Treitz P., Thomas V., Zarco-Tejada P., Gong P., and Curran P.J. (2008). Hyperspectral remote sensing for forestry. In E.A. Clostis (ed.), Manual of Remote Sensing, third edition. American Society for Photogrammetry and Remote Sensing, Bethesda, MD (in press).

    Google Scholar 

  • Ustin S.L., Roberts D.A., Gamon J.A., Asner G.P., and Green R.O. (2004). Using imaging spectroscopy to study ecosystem processes and properties. Bioscience, 54, 523–534.

    Article  Google Scholar 

  • Vane G. (1987). Earth Observing System—A Platform for Imaging Spectrometers: Imaging Spectroscopy II. SPIE, Bellingham, WA [Proc. SPIE, 834, 176–180].

    Google Scholar 

  • Vane G., Goetz A.F.H., and Wellman J.B. (1984). Airborne imaging spectrometer: A new tool for remote-sensing. IEEE Trans. Geoscience and Remote Sensing, 22, 546–549.

    Google Scholar 

  • Vane G., Green R.O., Chrien T.G., Enmark H.T., Hansen E.G., and Porter W.M. (1993). The Airborne Visible/infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment, 44, 127–143.

    Article  Google Scholar 

  • Wessman C.A. (1991). Remote-sensing of soil processes. Agriculture Ecosystems and Environment, 34, 479–493.

    Article  Google Scholar 

  • Wright W.D. (1969). The Measurement of Colour. Adam Hilger, London.

    Google Scholar 

  • Wulder M. (1998). Optical remote sensing techniques for the assessment of forest inventory and biophysical parameters. Progress in Physical Geography, 22, 449–476.

    Google Scholar 

  • Wylie B.K., Denda I., Pieper R.D., Harrington J.A., Reed B.C., and Southward G.M. (1995). Satellite based herbaceous biomass estimates in the pastoral zone of Niger. J. Range Management, 48, 159–164.

    Article  Google Scholar 

  • Yang C. and Su M. (2000). Analysis of spectral characteristics of rice canopy under water deficiency. Proc. 21st Asian Conf. on Remote Sensing, Taipei. Taiwan, National Central University of Taiwan, Taipei. Available at http://www.gisdevelopment.net/aars/acrs/2000/isl/agri003.asp

    Google Scholar 

  • Zagolski F., Pinel V., Romier R., Alcayde D., Fontanari J., Gastellu-Etchegorry J.P., Giordano G., Marty G., Mougin E., and Joffre R. (1996). Forest canopy chemistry with high spectral resolution remote sensing. Int. J. Remote Sensing, 17, 1107–1128.

    Article  Google Scholar 

  • Zarco-Tejada P.J. and Miller J.R. (1999). Land cover mapping at BOREAS using red edge spectral parameters from CASI imagery. J. Geophys. Res., 104, 921–933.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Dash, J., Curran, P.J., Foody, G.M. (2009). Remote sensing of terrestrial chlorophyll content. In: Global Climatology and Ecodynamics. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78209-4_5

Download citation

Publish with us

Policies and ethics