Skip to main content

Abstract

In the past few decades, gene regulatory networks and cellular signaling networks have been regarded as the major regulatory systems in a cell. In contrast, RNAs have been thought as molecules which are only transferring genetic information for protein production. Recently, microRNAs (miRNAs) have emerged as another layer of gene regulation. They regulate many key biological processes, including cell growth, death, development and differentiation. This discovery hints that cells have more complicated regulation systems. Genes are working together by forming cellular networks. It has become an emerging concept that miRNAs could intertwine with cellular networks to exert their function. Thus, it is essential to understand how miRNAs take part in cellular processes at a systems-level. In this chapter, I will summarize the most recent progress in understanding of miRNA biology at a systems-level: the principles of miRNA regulation of the major cellular networks including signaling, metabolic, protein interaction and gene regulatory networks. A common miRNA regulatory principle is emerging: miRNAs preferentially regulated the genes that have high regulation complexity. In addition, miRNAs preferentially regulate positive regulatory loops, highly connected scaffolds and the most network downstream components of cellular signaling networks, while miRNAs selectively regulate the genes which have specific network structural features on metabolic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acar M, Becskei A, van OA (2005) Enhancement of cellular memory by reducing stochastic transitions. Nature 435:228–232

    Article  PubMed  CAS  Google Scholar 

  • Awan A, Bari H, Yan F et al (2007) Regulatory network motifs and hotspots of cancer genes in a mammalian cellular signaling network. IET Syst Biol 1:292–297

    Article  PubMed  CAS  Google Scholar 

  • Batada NN, Hurst LD, Tyers M (2006) Evolutionary and physiological importance of hub proteins. PLoS Comput Biol 2:e88

    Article  PubMed  Google Scholar 

  • Boyer LA, Lee TI, Cole MF et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    Article  PubMed  CAS  Google Scholar 

  • Cora D, Herrmann C, Dieterich C et al (2005) Ab initio identification of putative human transcription factor binding sites by comparative genomics. BMC Bioinformatics 6:110

    Article  PubMed  CAS  Google Scholar 

  • Cui Q, Yu Z, Purisima EO et al (2006) Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2:46

    Article  PubMed  Google Scholar 

  • Cui Q, Yu Z, Pan Y et al (2007a) MicroRNAs preferentially target the genes with high transcriptional regulation complexity. Biochem Biophys Res Commun 352:733–738

    Article  PubMed  CAS  Google Scholar 

  • Cui Q, Yu Z, Purisima EO et al (2007b) MicroRNA regulation and interspecific variation of gene expression. Trends Genet 23:372–375

    Article  PubMed  CAS  Google Scholar 

  • Farh KK, Grimson A, Jan C et al (2005) The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310:1817–1821

    Article  PubMed  CAS  Google Scholar 

  • Fazi F, Rosa A, Fatica A et al (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123:819–831

    Article  PubMed  CAS  Google Scholar 

  • Feist AM, Henry CS, Reed JL et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  PubMed  Google Scholar 

  • Ferrell JE (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14:140–148

    Article  PubMed  CAS  Google Scholar 

  • He L, He X, Lim LP et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    Article  PubMed  CAS  Google Scholar 

  • Hornstein E, Shomron N (2006) Canalization of development by microRNAs. Nat Genet 38(Suppl):S20–S24

    Article  PubMed  CAS  Google Scholar 

  • Johnston RJ Jr, Chang S, Etchberger JF et al (2005) MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc Natl Acad Sci USA 102:12449–12454

    Article  PubMed  CAS  Google Scholar 

  • Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26:775–783

    Article  PubMed  CAS  Google Scholar 

  • Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  PubMed  CAS  Google Scholar 

  • Krutzfeldt J, Stoffel M (2006) MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab 4:9–12

    Article  PubMed  CAS  Google Scholar 

  • Lee TI, Rinaldi NJ, Robert F et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  PubMed  CAS  Google Scholar 

  • Lehner B, Crombie C, Tischler J et al (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 38:896–903

    Article  PubMed  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  • Li X, Carthew RW (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123:1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Li S, Armstrong CM, Bertin N et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang F, Lee JA et al (2006) MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev 20:2793–2805

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Li WH (2007) MicroRNA regulation of human protein protein interaction network. RNA 13:1402–1408

    Article  PubMed  CAS  Google Scholar 

  • Ma’ayan A, Jenkins SL, Neves S et al (2005) Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science 309:1078–1083

    Article  PubMed  Google Scholar 

  • Oda K, Kitano H (2006) A comprehensive map of the toll-like receptor signaling network. Mol Syst Biol 2:2006.0015

    Article  PubMed  Google Scholar 

  • Oda K, Matsuoka Y, Funahashi A et al (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1:2005.0010

    Article  PubMed  Google Scholar 

  • O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E et al (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731–743

    Article  PubMed  CAS  Google Scholar 

  • Salgado H, Gama-Castro S, Martinez-Antonio A et al (2004) RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res 32:D303–D306

    Article  PubMed  CAS  Google Scholar 

  • Shalgi R, Lieber D, Oren M et al (2007) Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 3:e131

    Article  PubMed  Google Scholar 

  • Stark A, Brennecke J, Bushati N et al (2005) Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123:1133–1146

    Article  PubMed  CAS  Google Scholar 

  • Tsang J, Zhu J, van OA (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26:753–767

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Purisima E (2005) Network motifs are enriched with transcription factors whose transcripts have short half-lives. Trends Genet 21:492–495

    Article  PubMed  Google Scholar 

  • Wang E, Lenferink A, O’Connor-McCourt M (2007) Cancer systems biology: exploring cancer-associated genes on cellular networks. Cell Mol Life Sci 64:1752–1762

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Lu J, Kulbokas EJ et al (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345

    Article  PubMed  CAS  Google Scholar 

  • Yoo AS, Greenwald I (2005) LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science 310:1330–1333

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Jian Z, Shen SH et al (2007) Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos. Nucleic Acids Res 35:152–164

    Article  PubMed  CAS  Google Scholar 

  • Zhang LV, King OD, Wong SL et al (2005) Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J Biol 4:6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, E. (2008). MicroRNA Systems Biology. In: Erdmann, V.A., Poller, W., Barciszewski, J. (eds) RNA Technologies in Cardiovascular Medicine and Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78709-9_5

Download citation

Publish with us

Policies and ethics