Skip to main content

Optimization and Recognition for K 5-minor Free Graphs in Linear Time

  • Conference paper
LATIN 2008: Theoretical Informatics (LATIN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4957))

Included in the following conference series:

Abstract

We present a linear time algorithm which determines whether an input graph contains K 5 as a minor and outputs a K 5-model if the input graph contains one. If the input graph has no K 5-minor then the algorithm constructs a tree decomposition such that each node of the tree corresponds to a planar graph or a graph with eight vertices. Such a decomposition can be used to obtain algorithms to solve various optimization problems in linear time. For example, we present a linear time algorithm for finding an \(O(\sqrt{n})\) seperator and a linear time algorithm for solving k-realisation on graphs without a K 5-minor. Our algorithm will also be used, in a separate paper, as a key subroutine in a nearly linear time algorithm to test for the existence of an H-minor for any fixed H.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Seymour, P., Thomas, R.: A separator theorem for nonplanar graphs. Journal of the American Mathematical Society 3(4), 801–808 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnborg, S., Proskurowski, A.: Linear time algorithms for np-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23, 11–24 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. Assoc. Comput. Mach. 41, 153–180 (1994)

    MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L.: Dynamic programming algorithms on graphs of bounded tree-width. In: Lepisto, T., Salomaa, A. (eds.) 15th International Colloquium on Automata, Languages and Programming, vol. 317, pp. 105–118. Springer, Heidelberg (1988)

    Google Scholar 

  5. Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. Journal of Algorithms 11, 631–643 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Courcelle, B.: The monadic second order logic of graphs. I. recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Demaine, E., Hajiaghayi, M., Nishimura, N., Ragde, P., Thilikos, D.: Approximation algorithms for classes of graphs excluding single-crossing graphs as minors. Journal of Computer and System Sciences 69(2), 166–195 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Demaine, E., Hajiaghayi, M., Thilikos, D.: Exponential speedup of fixed parameter algorithms on k. Algorithmica 41(4), 245–267 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic graph minor theory: Decomposition, approximation and coloring. In: Proc. 46th Ann. IEEE Symp. Found. Comp. Sci., pp. 637–646 (2005)

    Google Scholar 

  11. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15, 302–318 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gutwenger, C., Mutzel, P.: A linear time implementation of spqr-trees. In: Marks, J. (ed.) Graph Drawing, Colonial Williamsburg, 2000, pp. 77–90. Springer, Heidelberg (2001)

    Google Scholar 

  13. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 3, 135–158 (1973)

    Article  MathSciNet  Google Scholar 

  14. Kawarabayashi, K., Li, Z., Reed, B.: Near linear time algorithms for optimization and recognition for minor closed families (in preparation)

    Google Scholar 

  15. Kézdy, A., McGuinness, P.: Sequential and parallel algorithms to find a k5 minor. In: Third Annual Symposium on Discrete Algorithms, pp. 345–356. Springer, Heidelberg (1992)

    Google Scholar 

  16. Kuratowski, C.: Sur le problème des courbes gauches en topologie. Fundamenta Mathematica 16, 271–283 (1930)

    Google Scholar 

  17. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36(2), 177–189 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9, 615–627 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  19. Reed, B., Robertson, N., Schrijver, L., Seymour, P.: Finding disjoint trees in planar graphs in linear time. In: Graph Structure Theory, pp. 295–302. AMS (1993)

    Google Scholar 

  20. Reed, B., Wood, D.: Fast separation in a graph with an excluded minor. In: EuroConference on Combinatorics, Graph Theory and Applications, pp. 45–50 (2005)

    Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors. XIII: the disjoint paths problem. J. Comb. Theory Ser. B 63(1), 65–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Robertson, N., Seymour, P.D.: Graph minors. XVI. excluding a non-planar graph. Journal of Combinatorial Theory, Series B 89, 43–76 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Robertson, N., Seymour, P.D.: Graph minors. XX. wagner’s conjecture. J. Comb. Theory Ser. B 92(2), 325–357 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lagergren, J., Arnborg, S., Seese, D.: Easy problems for tree-decomposable graphs. Journal of Algorithms 12, 308–340 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wagner, K.: Über eine eigenschaft der ebenen komplexe. Math. Ann. 114, 570–590 (1937)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Sany Laber Claudson Bornstein Loana Tito Nogueira Luerbio Faria

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reed, B., Li, Z. (2008). Optimization and Recognition for K 5-minor Free Graphs in Linear Time. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78773-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78772-3

  • Online ISBN: 978-3-540-78773-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics